
The Model Is Not Enough:
Understanding Energy Consumption in Mobile Devices

James Bornholt
Australian National University

u4842199@anu.edu.au

Todd Mytkowicz
Microsoft Research

toddm@microsoft.com

Kathryn S. McKinley
Microsoft Research

mckinley@microsoft.com

1. Introduction
Although battery life has always constrained embedded and mo-
bile hardware developers, the rise of smart phones and tablets has
also made energy a fundamental concern of software developers.
On the desktop, software developers generally ignored energy,
but in the mobile environment, battery life is critical to the user
experience. Just as developers use performance profiling tools,
they now need energy profiling tools to understand how and why
their software consumes energy.

The inconvenience, cost, and complexity of external power
measurement hardware and the inaccuracy of on-board power
sensors on older phones [1] motivated researchers to create power
modelling tools. Power modelling uses utilization metrics to esti-
mate power draw based on previously measured correlations be-
tween the metrics and power.

We show that the on-board power sensor is now accurate on a
Windows Phone 7.5 device running on a SnapDragon MSM8660.
Compared to external measurement hardware, the on-board “fuel
gauge” is accurate to within 2% of total energy consumption.
We thus modify the Windows Phone 7.5 OS to sample power
without external hardware, sample the application call stack to
correlate energy consumption with code, and examine power
traces from two weeks of normal use. These traces illustrate
behavior where modelling alone is not sufficient to understand
the energy consumption of a mobile device. For example, we
observe inter-day variations in base power draw as the battery
discharges, an effect that to our knowledge is not captured by
existing modelling work.

This work recommends that a hybrid approach will improve
the accuracy of energy profiles, and that direct measurements
will significantly improve the accessibility of fine-grained energy
information in both testing and deployment. Armed with easy-
to-use energy analysis tools, hardware designers, OS developers,
and third party application developers will be better equipped to
understand and optimize the energy behavior of mobile code.

2. Related Work
Early energy modelling research used power measurements of
executing each machine instruction [4, 5]. These methods do not
extend well to modelling the power draw of other non-CPU com-
ponents, which constitute two thirds or more of energy consump-
tion on mobile devices.

For mobile devices, recent models use linear regression
trained on energy profiles of the entire device gathered from sce-
narios that stress each device component [3]. This model is ac-
curate compared to external measurements on short-duration test
runs. This approach, however, cannot address the tail power state
problem, where components improve responsiveness by waiting
in a higher power state for more work to arrive (see Section 4.1).

To provide fine-grained energy accounting, Pathak et al. [2]
introduce a finite state machine that models component power

draw by tracing system calls. For example, a read system call
transitions the flash storage component into a higher power state.
This approach is promising for attributing energy consumption
to code. However, it does not model power draw of key device
components, such as the screen or application CPU draw, and so
cannot present a complete picture of the device’s energy usage.

Dong and Zhong [1] overcome these problems with a hybrid
approach. They create models on-the-fly using the on-board bat-
tery sensor. They use low-frequency samples from the sensor to
track accuracy and trigger model reconstruction if the variation is
too high. This method potentially accounts for variation in base
power draw, but with a significant cost or latency. However, it
does not address the tail power state problem.

3. Measuring energy consumption
External measurement hardware, such as the Power Monitor with
which we compare in this paper, accurately measures power
draw from a phone’s battery. These tools, however, are relatively
expensive ($750, which is more than the phone itself) and limit
phone mobility, restricting real world testing.

On modern mobile devices, the “fuel gauge” (FG) provides
accurate readings of battery voltage and instantaneous current
draw for displaying remaining battery life. To validate the FG’s
accuracy, we executed benchmarks on a HTC (MSM8660 pro-
cessor) device running Windows Phone 7.5, simultaneously cap-
turing power measurements from the FG and an external Power
Monitor. The FG was accurate to within 2%±0.02 of the Power
Monitor. We suggest this accuracy is enough to replace external
hardware as the source of power measurements.

4. Power modelling
The main challenge in on-board energy profiling is accurately
attributing the energy consumed by particular applications and
methods. The traditional approach to this problem has been mod-
elling, which can both produce power readings and attribute them
to code entities.

4.1 Tail power states
Even with a model, tail power states complicate energy profil-
ing. To provide responsiveness, many components (e.g., radio,
GPS) continue to draw high power after use. For example, a 3G
radio may remain in a higher “tail” power state for up to seven
seconds after use. This tail power state complicates energy at-
tribution: the download has completed, the code has moved on,
and the application may no longer be running, but power is still
drawn. Further, if several applications use a component, which
one should be charged for the tail power state?

Pathak et al. [2] model tail power states with their system call
model, record the calling context of each system call, and assign
the tail power to the last calling context that used the device.

0 2 4 6 8
Time (hours)

0.42

1

2

3

4
P

ow
er

 (
w

at
ts

)

(a) Day 1: Idle power 0.42 W

0 2 4 6 8
Time (hours)

0.23

1

2

3

4

P
ow

er
 (

w
at

ts
)

Calendar
Email
Web
Others

(b) Day 2: Idle power 0.23 W

Figure 1. Two days of power usage with day-to-day variation.
Points are coloured by active application.

4.2 Shortcomings of modelling
There are two main drawbacks to modelling:

1. Accuracy is limited by the training environment and compo-
nents modelled (e.g., CPU and screen are often missing). Be-
cause the mobile environment is so diverse (hardware models,
cellular networks, etc.), modelling has the potential to be very
inaccurate.

2. The trade-off between latency, cost, and portability essen-
tially limits models to testing. Shipping system call traces to
a server introduces long latency, but running models on-board
has high overhead and can require external hardware, imped-
ing portability.

Our experiments also show a significant day-to-day variation
in base power draw when the phone is “idle.” Figure 1 plots two
days of power readings, revealing a variation of 0.19 W in base
power draw between two consecutive days of usage (the dashed
line at base of each figure). A point (x,y) on this graph plots
the power in watts (y) as a function of a day’s usage (time on
the x axis). Day 1’s base draw is 0.42 W while Day 2’s is 0.23 W,
which is a significant difference in total energy consumption over
several hours. Unless this variation is observed in the lab, a model
is unlikely to predict this day-to-day variation.

5. A hybrid approach
We advocate a hybrid approach to accurately attribute energy
consumption to the code that uses it: accurate battery sensors
(like the FG) to gather online power readings, and system call
modelling to handle components with tail states.

This approach has several benefits. First, it ensures that an
energy profile always shows a complete picture of system energy
consumption. By always capturing whole system power readings,
components acting in ways unanticipated by the model do not go

unobserved. While precise attribution is challenging, the recent
applications and their call stacks will help identify problems, par-
ticularly if applications are sampled over many days. Real mea-
surements at the very least identify power anomalies, and that
the model may need correction. Second, a hybrid approach deals
with tail power states in a way measurement alone cannot. For
example, it can accurately assign the energy usage of networking
hardware to the code making network calls, providing a more ac-
tionable energy profile to a developer. Finally, if we use on-board
sensors, we can avoid the need for expensive external hardware,
improving the accessibility of energy information to developers.

This approach also opens a new field of potential optimization
at the OS level. With completely online power measurements, the
OS may monitor battery life performance at a fine-grain in real
time, and perform optimization to achieve a battery life goal. For
example, if an alarm is set for 8 hours in the future and projecting
current energy consumption indicates that the battery will not last
that long, the OS can optimize components to meet this power
goal. This approach improves over the current practice, in which
the OS takes drastic measures when the battery is very low and
it is too late to recover. Guided by the component attribution
possible with modelling, the OS may determine that the GPS is
consuming too much energy and tune it to use less energy by
providing less accurate positions. Gathering the data must have
low overhead (less than 4% in our testing), such that it does not
contribute to the problem. The OS needs fine-grained real-time
low cost power data to make these types of optimizations. Our
tool provides such data.

6. Conclusion
Mobile devices are placing energy efficiency in the hands of soft-
ware developers. Unfortunately, power modelling alone cannot
identify significant power variations, nor is it practical in deploy-
ment. We show that on-board fine-grained power measurements
of the fuel gauge are now both accurate and low overhead.

We advocate a hybrid approach to power measurement: com-
bining the best aspects of both modelling and measurement to
produce accurate and actionable energy information for develop-
ers. Using such tools, developers have the potential to understand
and optimize the energy behavior of their code. Operating sys-
tem developers have the potential to guide real-time optimization
in the interests of battery life, a significant advancement over the
current state of power optimization. These advances are critical to
the future of mobile software, as developers at all levels come to
terms with their new-found responsibility for energy efficiency.

References
[1] M. Dong and L. Zhong. Self-constructive high-rate system energy modeling

for battery-powered mobile systems. In Proceedings of the 9th international
conference on Mobile systems, applications, and services, MobiSys ’11,
pages 335–348, June 2011.

[2] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained power
modeling for smartphones using system call tracing. In Proceedings of the
sixth conference on Computer systems, EuroSys ’11, pages 153–168, Apr.
2011.

[3] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 168–178, Dec. 2009.

[4] P. Stanley-Marbell and M. Hsiao. Fast, flexible, cycle-accurate energy esti-
mation. In Proceedings of the 2001 international symposium on Low power
electronics and design, ISLPED ’01, pages 141–146, 2001.

[5] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee. Instruction level power
analysis and optimization of software. In Proceedings of the 9th International
Conference on VLSI Design: VLSI in Mobile Communication, VLSID ’96,
pages 326–328, 1996.

