
The Model Is Not Enough:
Understanding Energy Consumption in Mobile Devices

James Bornholt
Todd Mytkowicz

Kathryn S. McKinley

Why understand energy?
Smart phones and tablets force software developers to focus on
battery life.
Developers already optimise performance using profilers. Our
goal is to build an energy profiler.

Why is energy profiling difficult?
The two ways to calculate energy—hardware power meters and
software modelling—have drawbacks.
Attribution of energy to code is made difficult by tail power states,
which shift the blame.

ANU College of
Engineering & Computer Science

Australian National University
u4842199@anu.edu.au

Microsoft Research
toddm@microsoft.com

Microsoft Research
mckinley@microsoft.com

Power modelling
Modelling uses metrics such as CPU and network usage to
extrapolate power draw, but this has issues for profiling use.
Recent work uses system call tracing to handle tail power states,
but other issues remain.

Power measurement
Hardware power meters are common for power measurement,
but these are impractical for most developers.
Our work shows the onboard “fuel gauge” battery sensor is
accurate to within 2% of external meters, but measurement alone
cannot address tail power states.

Figure 3 Modelling misses a base power variation, worth 30% of battery life over 8 hours.

Figure 4 An energy bug in the MSN website, seen and diagnosed by an energy profiler.

Figure 1 The 3G radio’s tail power state consumes energy while the CPU is idle.

Figure 2 Tail power states avoid returning to the ramp
up state, therefore reducing latency.

Figure 5 Profiles can be used to meet energy goals by tuning hardware QoS settings.

A hybrid approach
Based on our results, we advocate a hybrid approach to energy
profiling.
This approach makes energy profiling more accurate, more
actionable, and more accessible.

What do we get from this data?
Energy profiles let developers isolate poor energy usage in their
code.
Energy profiles open a new field of potential online OS-level
energy optimisations.

A deeper look: energy profiling
Why understand energy?
•	Software and energy interact in subtle and non-trivial ways – for example, grouping of
network requests to avoid thrashing the network hardware

•	Energy bugs present serious usability problems, because users cannot easily identify
them until it is too late (i.e. the battery is empty)

Why is energy profiling difficult?
•	Hardware meters are often expensive and bulky
•	Models are specific to their training environment
•	Tail power states reduce ramp-up latency by allowing components to remain powered on
after last use

•	So it’s wrong to attribute current power draw to the currently executing code – the real
culprit may be long gone!

A deeper look: modelling and measurement
Power modelling
•	The raw numbers are often quite good: errors of below 10%
•	But the models:

1.	Do not address tail power states
2.	Are specific to the lab environment they are trained in
3.	Cannot detect the unexplained power variation in Figure 3

•	In system call tracing, finite state machines model each component’s power states,
using system calls to transition the machine

•	This addresses the tail power state problem, but suffers the other drawbacks of
modelling, and also cannot yet capture important components like the screen

Power measurement
•	External meters are expensive and bulky, making them inaccessible and difficult to use
•	The fuel gauge typically measures battery capacity, but modern sensors provide
instantaneous power draw

•	When testing an HTC Windows Phone, the onboard sensor was accurate to within 2%
of total energy compared to the power meter

•	The overhead of sampling the fuel gauge at 5 Hz was less than 4%.
•	This means the fuel gauge is accurate enough to replace the external power meter for
many uses, but may not be appropriate for very high frequency sampling
•	The power meter we used samples at 5000 Hz

A deeper look: hybrid energy profiles
A hybrid approach
•	Accurate onboard sensors for online, whole-system power readings, and system call
modelling to handle tail power states

•	Energy profiles will always show a complete picture of system energy use, rather than
omitting unmodelled components, making profiles more accurate

•	Tail power states are handled, making profiles more actionable
•	By removing the need for hardware, even for training, profiles are more accessible
What do we get from this data?
•	In Figure 4 we see MSN as a clear outlier in energy use
•	The profile identifies excessive image preloading as the cause of this inefficiency
•	The OS can use online profiles to achieve battery life goals; for example, tuning energy
use to ensure a scheduled alarm goes off

•	Guided by component attribution, this tuning can target specific energy users like the
GPS, and trade accuracy or speed for battery life

Tail power states: who’s to blame? Modelling misses important variation Energy profiles identify real bugs

Idle
state

Active
state

Ramp up

Tail
state

Start activity

Device ready
(< 0.4 secs)

Finish activity

Inactive for
5 secs

Start new activity

Fuel Gauge

System Calls

Profiler OS Power Daemon

User Data

Developer GPS 3G Other HW

Sensor data

Selected calls App energy profiles

Component data
QoS settings

Energy goals (e.g. alarms)

Hardware
Developer
User

OS

