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But what if the system crashes?

File System

The best of times 
The worst of times

Application

The best of times 
The worst of times

This provides roughly 
the same level of 
guarantees as ext3. 

Linux kernel ext4 documentation

If the file system is 
inconsistent after a 
crash it is usually 
automatically checked 
and repaired when the 
system is rebooted 

Proposed POSIX  fsync documentation 

POSIX system calls
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But what if the system crashes?

File System

The best of times 
The worst of times

Application

The best of times 
The worst of times

POSIX system calls

Optimizations 
are exposed

When gradually appending to a 
file, the content gets corrupted, 
causing Chrome to crash 

ChromeOS “FS corruption on panic”, 2015

…some of the KDE core 
config files were reset. 
Also some of my MySQL 
databases were killed… 

Ubuntu “ext4 data loss”, 2009

The best o00000 
0000000 of tim        
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Validate the model against the 
system with litmus tests

Just like a memory model!
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File operations Writes
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create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)
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Atomic replace via rename

create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt        
The best of times 
The worst of times

Crash!
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The storage stack

write(f, “The age of …”) 
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

This provides roughly the same 
level of guarantees as ext3. 

Linux kernel ext4 documentation

The key aspects of fsync() are 
unreasonable to test in a test 
suite 

POSIX specification for fsync
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Existing work

write(f, “The age of …”) 
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

Formalize the existing POSIX 
interface (e.g. SibylFS [SOSP’15]) 

But the interface says nothing about 
crash safety

Build a new crash-safe file system 
(e.g. FSCQ [SOSP’15]) 

Comes with extremely high verification 
burden

Find bugs in existing file systems 
(e.g. eXplode [OSDI’06]) 

Ours is a complementary problem: 
precisely specifying actual behavior
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Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a 
file system across crashes 

initial: 
  f = create(“file”) 
  write(f, old) 

main: 
  f = create(“file.tmp”) 
  write(f, new) 
  close(f) 
  rename(“file.tmp”, “file”) 

exists?: 
  content(“file”) != old & content(“file”) != new

memory parallelism
Initially A = B = 0

A = 1 
r1 = B

B = 1 
r2 = A

Thread 1 Thread 2

Can r1 = 0 & r2 = 0?
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Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a 
file system across crashes 

Prefix append
Atomic replace 

via rename
Atomic create 

via rename

ext4 Unsafe Unsafe Unsafe
xfs Safe Unsafe Unsafe
f2fs Unsafe Unsafe Unsafe

nilfs2 Safe Unsafe Unsafe
btrfs Safe Safe Unsafe
ufs2 Unsafe Unsafe Unsafe

File system

Litmus test

We suspect that most modern filesystems 
exhibit the safe append property. 

SQLite Atomic Commit documentation
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Formal specifications

f = create(“file.tmp”) 
write(f, new) 
close(f) 
rename(“file.tmp”, “file”)

P    = 

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

A crash-consistency model is a filter on traces: it specifies which traces 
(and prefixes of traces) are allowed.

Sequential crash-consistency 
allows no reorderings

Stronger models 
Fewer traces

Weaker models 
More traces

Relaxed file systems 
allow more reorderings
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ext4 crash-consistency

f = create(“file.tmp”) 
write(f, new) 
close(f) 
rename(“file.tmp”, “file”)

P    = 

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

ext4 crash-consistency: allows traces 
that respect ordering of: 
1. Metadata updates to the same file 
2. Same-block writes 
3. Same-directory operations 
4. Write-append operations



Crash-consistency models
Like memory consistency models but for describing file system crashes

Litmus tests Formal specifications

Small programs that 
demonstrate allowed or 
forbidden behaviors of a file 
system across crashes

Axiomatic descriptions of 
crash consistency using first 
order logic

Documentation for 
application developers

Automated reasoning about 
crash safety
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The storage stack is complex

write(f, “The age of …”) 
write(f, “The epoch of …”)

Diagram by Werner Fischer
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File System  
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Ferrite
Storage stack

System calls

Disk commands

Correlate system calls 
and disk commands; 
generate possible 
crash outcomes
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Checking models with Ferrite

Litmus tests ResultsFerrite

Crash-consistency 
Model

Check the model 
produces expected 
outcomes.
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exists?: 
  content(“file”) != old & content(“file”) != new

Automating crash consistency
initial: 
  f = create(“file”) 
  write(f, old)

main:
fsync(f)
f = create(“file.tmp”)
fsync(f)
write(f, new)
fsync(f)
close(f)
fsync(f)
rename(“file.tmp”, “file”)
fsync(f)
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Synthesizing crash consistency
initial: 
  f = create(“file”) 
  write(f, old)

main:

close(f)

f = create(“file.tmp”)
write(f, new)
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fsync(f)

rename(“file.tmp”, “file”)

exists?: 
  content(“file”) != old & content(“file”) != new

Synthesizing crash consistency
initial: 
  f = create(“file”) 
  write(f, old)

main:

close(f)
Crash-safe 

program

f = create(“file.tmp”)
write(f, new)

Program Crash-consistency 
model

              Synthesizer

Spec



fsync(f)

rename(“file.tmp”, “file”)

exists?: 
  content(“file”) != old & content(“file”) != new

Synthesizing crash consistency
initial: 
  f = create(“file”) 
  write(f, old)

main:

close(f)
Crash-safe 

program

Minimal 
necessary 
synchronization

f = create(“file.tmp”)
write(f, new)

Program Crash-consistency 
model

              Synthesizer

Spec
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A precise formal specification 
of the crash guarantees that a 
file system provides

Ferrite

Validate the model against the 
system with litmus tests

A DNA-Based  Archival Storage System Wednesday, right before lunch


