
Specifying and Checking
File System
Crash-Consistency Models
James Bornholt
Antoine Kaufmann
Jialin Li
Arvind Krishnamurthy
Emina Torlak
Xi Wang

University of Washington

File systems persist our data

File System

Application

File systems persist our data

File System

The best of times
The worst of times

Application

File systems persist our data

File System

The best of times
The worst of times

Application

The best of times
The worst of times

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

POSIX system calls

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

This provides roughly
the same level of
guarantees as ext3.

Linux kernel ext4 documentation

If the file system is
inconsistent after a
crash it is usually
automatically checked
and repaired when the
system is rebooted

Proposed POSIX fsync documentation

POSIX system calls

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

POSIX system calls

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

POSIX system calls

Optimizations
are exposed

The best o00000
0000000 of tim

But what if the system crashes?

File System

The best of times
The worst of times

Application

The best of times
The worst of times

POSIX system calls

Optimizations
are exposed

When gradually appending to a
file, the content gets corrupted,
causing Chrome to crash

ChromeOS “FS corruption on panic”, 2015

…some of the KDE core
config files were reset.
Also some of my MySQL
databases were killed…

Ubuntu “ext4 data loss”, 2009

The best o00000
0000000 of tim

Crash-consistency models

File System

Application

Crash-consistency model

Crash-consistency models

File System

Application

Crash-consistency model

A precise formal specification
of the crash guarantees that a
file system provides

Crash-consistency models

File System

Application

Crash-consistency model

A precise formal specification
of the crash guarantees that a
file system provides

Just like a memory model!

Crash-consistency models

File System

Application

Crash-consistency model

A precise formal specification
of the crash guarantees that a
file system provides

Ferrite

Validate the model against the
system with litmus tests

Just like a memory model!

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Replacing the contents of a file

foo.txtfoo.txtfoo.txt
The best of times
The worst of times

The age of wisdom
The epoch of belief

foo.txtfoo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

foo.tmpfoo.txtfoo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

foo.tmpfoo.txtfoo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom

foo.tmpfoo.txtfoo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom
The epoch of belief

foo.tmpfoo.txtfoo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom
The epoch of belief

foo.tmpfoo.txt foo.txt

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

The best of times
The worst of times

The age of wisdom
The epoch of belief

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

Atomic replace via rename

f = create(“foo.tmp”)
write(f, “The age of …”)
write(f, “The epoch of …”)
close(f)
rename(“foo.tmp”, “foo.txt”)

create(“foo.tmp”)

write(f, “The age of …”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

Atomic replace via rename

create(“foo.tmp”)

write(f, “The age of …”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

Atomic replace via rename

create(“foo.tmp”) write(f, “The age of …”)

write(f, “The epoch of …”)rename(“foo.tmp”, “foo.txt”)

File operations Writes

Atomic replace via rename

create(“foo.tmp”)

write(f, “The age of …”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

Atomic replace via rename

create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt
The best of times
The worst of times

Atomic replace via rename

create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt
The best of times
The worst of times

Atomic replace via rename

create(“foo.tmp”)

rename(“foo.tmp”, “foo.txt”)

write(f, “The age of …”)

write(f, “The epoch of …”)

foo.txt foo.tmpfoo.txt
The best of times
The worst of times

Crash!

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

Diagram by Werner Fischer

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

This provides roughly the same
level of guarantees as ext3.

Linux kernel ext4 documentation

The storage stack

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

This provides roughly the same
level of guarantees as ext3.

Linux kernel ext4 documentation

The key aspects of fsync() are
unreasonable to test in a test
suite

POSIX specification for fsync

Existing work

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

Formalize the existing POSIX
interface (e.g. SibylFS [SOSP’15])

But the interface says nothing about
crash safety

Existing work

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

Formalize the existing POSIX
interface (e.g. SibylFS [SOSP’15])

But the interface says nothing about
crash safety

Build a new crash-safe file system
(e.g. FSCQ [SOSP’15])

Comes with extremely high verification
burden

Existing work

write(f, “The age of …”)
write(f, “The epoch of …”)

Controller

Low-level Driver

Block Layer

File System

Formalize the existing POSIX
interface (e.g. SibylFS [SOSP’15])

But the interface says nothing about
crash safety

Build a new crash-safe file system
(e.g. FSCQ [SOSP’15])

Comes with extremely high verification
burden

Find bugs in existing file systems
(e.g. eXplode [OSDI’06])

Ours is a complementary problem:
precisely specifying actual behavior

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Crash-consistency models

Crash-consistency models

Litmus tests

Small programs that
demonstrate allowed or
forbidden behaviors of a file
system across crashes

Crash-consistency models

Litmus tests Formal specifications

Small programs that
demonstrate allowed or
forbidden behaviors of a file
system across crashes

Axiomatic descriptions of
crash consistency using first
order logic

Crash-consistency models

Litmus tests Formal specifications

Small programs that
demonstrate allowed or
forbidden behaviors of a file
system across crashes

Axiomatic descriptions of
crash consistency using first
order logic

Documentation for
application developers

Crash-consistency models

Litmus tests Formal specifications

Small programs that
demonstrate allowed or
forbidden behaviors of a file
system across crashes

Axiomatic descriptions of
crash consistency using first
order logic

Documentation for
application developers

Automated reasoning about
crash safety

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Initial setup
(cannot crash)

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Initial setup
(cannot crash)

Main body (may
crash at any point)

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Initial setup
(cannot crash)

Main body (may
crash at any point)

Check whether some (possibly
crashing) execution satisfies
predicates

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Initial setup
(cannot crash)

Main body (may
crash at any point)

Check whether some (possibly
crashing) execution satisfies
predicates

Check for behavior that may
surprise application writers

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

memory parallelism

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

initial:
 f = create(“file”)
 write(f, old)

main:
 f = create(“file.tmp”)
 write(f, new)
 close(f)
 rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

memory parallelism
Initially A = B = 0

A = 1
r1 = B

B = 1
r2 = A

Thread 1 Thread 2

Can r1 = 0 & r2 = 0?

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

Prefix append
Atomic replace

via rename
Atomic create

via rename

Litmus test

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

Prefix append
Atomic replace

via rename
Atomic create

via rename

ext4 Unsafe Unsafe Unsafe

File system

Litmus test

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

Prefix append
Atomic replace

via rename
Atomic create

via rename

ext4 Unsafe Unsafe Unsafe
xfs Safe Unsafe Unsafe
f2fs Unsafe Unsafe Unsafe

nilfs2 Safe Unsafe Unsafe
btrfs Safe Safe Unsafe
ufs2 Unsafe Unsafe Unsafe

File system

Litmus test

Litmus tests
Small programs that demonstrate allowed or forbidden behaviors of a
file system across crashes

Prefix append
Atomic replace

via rename
Atomic create

via rename

ext4 Unsafe Unsafe Unsafe
xfs Safe Unsafe Unsafe
f2fs Unsafe Unsafe Unsafe

nilfs2 Safe Unsafe Unsafe
btrfs Safe Safe Unsafe
ufs2 Unsafe Unsafe Unsafe

File system

Litmus test

We suspect that most modern filesystems
exhibit the safe append property.

SQLite Atomic Commit documentation

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Formal specifications
Axiomatic descriptions of crash consistency using first order logic

Ordering constraints on events in traces

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

Formal specifications
Axiomatic descriptions of crash consistency using first order logic

Ordering constraints on events in traces

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

Formal specifications
Axiomatic descriptions of crash consistency using first order logic

Ordering constraints on events in traces

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

A trace is a sequence of file system events generated by an execution of P

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

Formal specifications
Axiomatic descriptions of crash consistency using first order logic

Ordering constraints on events in traces

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

A trace is a sequence of file system events generated by an execution of P

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

A crash-consistency model is a filter on traces: it specifies which traces
(and prefixes of traces) are allowed.

Formal specifications

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

A crash-consistency model is a filter on traces: it specifies which traces
(and prefixes of traces) are allowed.

Stronger models
Fewer traces

Weaker models
More traces

Formal specifications

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

A crash-consistency model is a filter on traces: it specifies which traces
(and prefixes of traces) are allowed.

Sequential crash-consistency
allows no reorderings

Stronger models
Fewer traces

Weaker models
More traces

Formal specifications

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

A crash-consistency model is a filter on traces: it specifies which traces
(and prefixes of traces) are allowed.

Sequential crash-consistency
allows no reorderings

Stronger models
Fewer traces

Weaker models
More traces

Relaxed file systems
allow more reorderings

ext4 crash-consistency

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

ext4 crash-consistency

f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

P =

create(“foo.tmp”)

write(f, “The epoch of …”)

rename(“foo.tmp”, “foo.txt”)

ext4 crash-consistency: allows traces
that respect ordering of:
1. Metadata updates to the same file
2. Same-block writes
3. Same-directory operations
4. Write-append operations

Crash-consistency models
Like memory consistency models but for describing file system crashes

Litmus tests Formal specifications

Small programs that
demonstrate allowed or
forbidden behaviors of a file
system across crashes

Axiomatic descriptions of
crash consistency using first
order logic

Documentation for
application developers

Automated reasoning about
crash safety

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

The storage stack is complex

write(f, “The age of …”)
write(f, “The epoch of …”)

Diagram by Werner Fischer

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite

System calls

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite
Storage stack

System calls

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite
Storage stack

System calls

Disk commands

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite
Storage stack

System calls

Disk commands

Correlate system calls
and disk commands;
generate possible
crash outcomes

Building models with Ferrite

Litmus tests

File System
(via QEMU)

Ferrite Crash-consistency
Model

Checking models with Ferrite

Litmus tests ResultsFerrite

Crash-consistency
Model

Check the model
produces expected
outcomes.

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

Crash behavior of
modern file systems

Crash-consistency models
Litmus tests & formal specifications

Ferrite: developing
crash-consistency models

Building crash-safe
applications

exists?:
 content(“file”) != old & content(“file”) != new

Automating crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:
f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Automating crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:
fsync(f)
f = create(“file.tmp”)
fsync(f)
write(f, new)
fsync(f)
close(f)
fsync(f)
rename(“file.tmp”, “file”)
fsync(f)

Synthesizing crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:
f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Program Crash-consistency
model

Spec

Synthesizing crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:
f = create(“file.tmp”)
write(f, new)
close(f)
rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Program Crash-consistency
model

 Synthesizer

Spec

fsync(f)

rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Synthesizing crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:

close(f)

f = create(“file.tmp”)
write(f, new)

Program Crash-consistency
model

 Synthesizer

Spec

fsync(f)

rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Synthesizing crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:

close(f)
Crash-safe

program

f = create(“file.tmp”)
write(f, new)

Program Crash-consistency
model

 Synthesizer

Spec

fsync(f)

rename(“file.tmp”, “file”)

exists?:
 content(“file”) != old & content(“file”) != new

Synthesizing crash consistency
initial:
 f = create(“file”)
 write(f, old)

main:

close(f)
Crash-safe

program

Minimal
necessary
synchronization

f = create(“file.tmp”)
write(f, new)

Program Crash-consistency
model

 Synthesizer

Spec

Crash-consistency models

File System

Application

Crash-consistency model

A precise formal specification
of the crash guarantees that a
file system provides

Ferrite

Validate the model against the
system with litmus tests

Crash-consistency models

File System

Application

Crash-consistency model

A precise formal specification
of the crash guarantees that a
file system provides

Ferrite

Validate the model against the
system with litmus tests

A DNA-Based Archival Storage System Wednesday, right before lunch

