Nickel

A Framework for Design and Verification of
Information Flow Control Systems

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney,
James Bornholt, Emina Torlak, and Xi Wang

UNIVERSITY of WASHINGTON
'W PAUL G. ALLEN SCHOOL

UN SA?O rg

Enforcing information flow control is critical

FBI: Hacker Clalmed to have taken over
flight's engine controls e

By Evan Perez, CNN

nnnnnnn

AR R S s Hacker Chris Roberts told FBI he took
control of United plane, FBI claims

By Justin Wm. Moyer
May 18, 2015

Man claims entertainment system helped him hack plane 02:09

Covert channels through error codes

Eddie Kohler @xexd - Aug 8

keeps happening.

noreply@hotcrp.com 2:35 AM (6 hours ago)

tome ~

2018/08/08 06:30:07 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #500. []

@/asplos19-paper500.pdf xxx@stanford.edu

2018/08/08 06:30:13 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #600. []

@/asplos19-paper600.pdf xxx@stanford.edu

2018/08/08 06:30:18 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #1000. []

@/asplos19-paper1000.pdf xxx@stanford.edu

2018/08/08 06:30:24 h.asplos19: bad doc 403 Forbidden You aren’t allowed to view submission #10000. []

@/asplos19-paper10000.pdf xxx@stanford.edu

O 4 il O 1 =]

W o~

vV

| spent many years after Asbestos/HiStar down on information flow, because it
makes things too hard to program for too little gain. Still think that! But this

Eliminating unintended flows is difficult

e Covert channels: A channel not intended for information
flow [Lampson 73]

* Covert channels are often inherent in interface design

* Examples of covert channels in interfaces:

 ARINC 653 avionics standard [TACAS ‘16]
* Floating labels in Asbestos [Oakland ‘09, OSDI ‘06]

Eliminating unintended flows is difficult

e Covert channels: A channel not intended for information
flow [Lampson 73]

* Covert channels are often inherent in interface design

* Examples of covert channels in interfaces:

 ARINC 653 avionics standard [TACAS ‘16]
* Floating labels in Asbestos [Oakland ‘09, OSDI ‘06]

Our approach: Verification-driven interface design

Specify policy |——) Design interface '—)

Verify interface
against policy

—9

‘ Counterexample |

* Extends prior work of push-button verification:

* Yggdrasil [OSDI ‘16] & Hyperkernel [SOSP ‘17]

* Limitations
* Finite interface, expressible using SMT.

* Hardware-based side channels not in scope and no concurrency.

Contributions

* New formulation and proof strategy for noninterference

* Nickel: A framework for design and verification of
information flow control (IFC) systems

* Experience building three systems using Nickel
* First formally verified decentralized IFC OS kernel
* Low proof burden: order of weeks

Covert channel in resource names

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

Covert channel in resource names

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

5
et |5 [rmemr

Covert channel in resource names

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

5
et |5 [rmemr

@ spawn =2 3

Covert channel in resource names

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

5
et |5 [rmemr

spawn 2> 3+1

spawn 9 3+5

Covert channel in resource names

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

5
et 5

spawn 2> 3+1

spawn 9 3+5

@ spawn 2> 3+5+1

Examples of covert channels

* Resource names

* Resource exhaustion
e Statistical information
* Error handling

* Scheduling

* Devices and services

Noninterference intuition

Process 2: Process 1: Process 2:
Spawn - 3 spawn 5 times Spawn > 9

Noninterference intuition

Process 2: Process 1: Process 2:
Spawn - 3 spawn 5 times Spawn > 9
Process 2: Process 2:

Spawn - 3 Spawn - 4

Noninterference intuition

Process 2: Process 1: Process 2:
Spawn - 3 spawn 5 times Spawn > 9

Process 2: Process 2:
Spawn 2> 3 Spawn 2> 4

s Process 1 interferes with Process 2

Information flow policies in Nickel

* Set of domains D: e.g., processes
* Can-flow-to relation w» € (D X D): permitted flow between domains

* Function dom: (A X S) — D: maps an action and state to a domain

Flexible definition enables broad set of policies

 Can-flow-to relation can be intransitive

* State dependent dom

Noninterference definition

sources(e, u, s) = {u}
sources(tr, u, step(s, a)) U {dom(a,s)} if3dv € sources(tr,u,step(s,a). dom(a,s) = u

sources(a o tr,u,s) = _
sources(tr, u, step(s, a)) otherwise

purge(e, u,s) = {e}
{aotr' | tr' € purge(tr, u, step(s, a))} if dom(a, s) € sources(ao tr,u, s)

urge(aotr,u,s) :=
purge() {{a otr’ | tr' € purge(tr, u, step(s, a))} U purge(tr,u,s) otherwise

Vir' e purge(tr, dom(a, run(init, tr)),init). output(run(init,tr),a) = output(run(init, tr’), a)

Noninterference definition

Given a policy, purging actions “irrelevant”

to a domain should not affect the output of
the actions for that domain

Automated verification of noninterference

e J(init) AJ(s) = 7 (step(s, a))

. is reflexive, symmetric, and transitive
d ,

e J(S)NIT(t) As Omw(/a ? t = dom(a,s) = dom(a,t)
u

cJ(s)AI(t)As =t>=> (dom(a,s) w» u & dom(a,t) w u)
dom(a,s)

cJ(S)ANI()As = ~t= output(s,a) = output(t,a)

* J(s) Ndom(a,s) v u = s ~ step(s,a)

dom(a,s)

-7(5)/\7(15)/\5215/\5 ~ t:step(s,a)gstep(t,a)

Automated verification of noninterference

*JinRR)AJI(s) = Jistepis. a

Proof strategy: unwinding conditions
 Together imply noninterference

* Requires reasoning only about individual actions
* Amenable to automated reasoning using SMT

s Jis)Adomia.s)u=ms~siepis. a)

0 4)

.]\A}(\\;(ﬂ\\ * L™ siepis.a ;\!(’p(lu)

Outline

* New formulation and proof strategy for noninterference

* Nickel: A framework for design and verification of
information flow control (IFC) systems

* Experience building three systems using Nickel
* First formally verified decentralized IFC OS kernel
* Low proof burden: order of weeks

Verification-driven interface design in Nickel

Specify policy i# Design interface i—?

Verify interface
against policy

Counterexample

Verification-driven interface design in Nickel

Specify policy i# Design interface i—?

Verify interface
against policy

Counterexample

Verify implementation
against interface

Implement
interface

Trusted

Information flow
policy

Interface
specification

Observation
function

Information flow
policy Policy:

n processes that are not allowed
to communicate with each other

Interface
specification

Observation
function

class State:

" current
Information flow T or
policy _Procs

proc status

PidT ()
SizeT()
Map (P1dT, StatusT)

Interface
specification

Observation
function

Information flow
policy

Interface
specification

Observation
function

class State:
current
nr procs
proc status

PidT ()
SizeT()
Map (P1dT, StatusT)

def can flow to(domainl, domain2):
Flow 1s only permitted,
1f they are the same domain
return domainl == domain2

Information flow
policy

Interface
specification

Observation
function

class State:
current
nr procs
proc status

PidT()
SizeT()
Map (P1dT, StatusT)

def can flow to(domainl, domain2):
Flow 1s only permitted,
1f they are the same domain
return domainl == domain2

def dom(action, state):
Domain of every action
1s just the current process
return state.current

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy

Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

o
ification
specificatio # bump the number of processes

new.nr procs += 1

1nitialize the child process
Observation new.procs status[child pid] = RUNNABLE

function

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy # Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

specification
P # bump the number of processes

new.nr procs += 1

1nitialize the child process
Observation new.procs status[child pid] = RUNNABLE

function

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy # Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

specification
P # bump the number of processes

new.nr procs += 1

1nitialize the child process
Observation new.procs status[child pid] = RUNNABLE

function

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy # Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

specification
P # bump the number of processes

new.nr procs += 1

1nitialize the child process
Observation new.procs status[child pid] = RUNNABLE

function

return the new state and condition and
the child's pid
return new, pre, child pid

Trusted

Information flow
policy

Interface
specification

Observation
function

def sys spawn(old):
compute child pid
child pid = old.nr _procs + 1

Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state
new = old.copy()

bump the number of processes
new.nr procs += 1

1nitialize the child process
new.procs status[child pid] = RUNNABLE

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy

Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

Interface new = old.copy()
specification

bump the number of processes
new.nr procs += 1

Observation
function

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
Trusted # compute child pid
child pid = old.nr _procs + 1

Information flow

policy

Check 1f there are too many processes
pre = child pid <= NR PROCS

clone old state

o
ification
specificatio # bump the number of processes

new.nr procs += 1

1nitialize the child process
Observation new.procs status[child pid] = RUNNABLE

function

return the new state and condition and

the child's pid
return new, pre, child pid

Trusted

class State:

Information flow current
policy nr _procs

proc status

PidT()
SizeT()
Map (Pi1dT, StatusT)

Interface
specification

Observation
function

Trusted

class State:

Information flow current
policy nr _procs

proc status

PidT ()
SizeT()
Map (Pi1dT, StatusT)

def observable state(state, pid):
return [
state.current,
state.nr procs,
state.procs status|[pid]

Interface
specification

Observation |
function

Trusted class State:
Information flow current = P1dT()
policy nr procs = SizeT()
proc status = Map(PidT, StatusT)

def observable state(state, pid):
return |

state.current,
state.procs status|[pid]
]
function

Interface
specification

Trusted class State:
Information flow current = P1dT()
policy nr procs = SizeT()
proc status = Map(PidT, StatusT)

def observable state(state, pid):
return |
state.current,
state.nr procs,

state.procs status|[pid]
]

Interface
specification

Observation
function

Trusted

Information flow
policy

Interface
specification

Nickel
verifier

Observation
function

Trusted

Information flow
policy

Counter-

/’ example

Channel

-

Interface
specification

Nickel
verifier

v

Observation
function

Trusted

Design patterns

Information flow

policy

* Partition names among domains

 Reduce flows to the scheduler

Interface
specification * Perform flow checks early
* Limit resource usage with quotas
Observation * Encrypt names from a large space
function

* Expose or enclose nondeterminism

def sys spawn(old):

Trusted # compute child pid
: child pid = (old.procs nr children[old.current]
|nf0rmatIOn fIOW + 1 + o'l_dlcurrent E S 3)

policy

Check if current has too many children
pre = old.procs nr children[new.current] <= 3

clone old state

o
specification # bump the number of processes

new.procs nr _children[new.current] += 1

initialize the child process
: new.procs status[child pid] = RUNNABLE
Observation new.procs nr children[child pid] = 0

function

return the new state and condition and
the child's pid
return new, pre, child pid

def sys spawn(old):
compute child pid
child pid = (old.procs nr children[old.current]

Trusted

Information flow
policy

+ 1 + old.current * 3)

Check if current has too many children
pre = old.procs nr children[new.current] <= 3

clone old state

o
specification # bump the number of processes

new.procs nr _children[new.current] += 1

initialize the child process
: new.procs status[child pid] = RUNNABLE
Observation new.procs nr children[child pid] = 0

function

return the new state and condition and
the child's pid
return new, pre, child pid

Trusted

Information flow
policy

Counter-

/’ example

Channel

-

Interface
specification

Nickel
verifier

v

Observation
function

Trusted

Information flow
policy

Counter-

/’ example

Channel

-

Interface
specification

Nickel
verifier

vd

Observation
function

Verified

Outline

* New formulation and proof strategy for noninterference

* Nickel: A framework for design and verification of
information flow control (IFC) systems

* Experience building three systems using Nickel
* First formally verified decentralized IFC OS kernel
* Low proof burden: order of weeks

Decentralized information flow control (DIFC)

* Flexible mechanism to enforce security policies [SOSP '97]
* Each object assigned labels for tracking and mediating data access

* Several operating system kernels enforce DIFC:
* Asbestos [SOSP '05]
e HiStar [OSDI '06]
* Flume [SOSP '07]

* Our goal: Build a DIFC OS kernel without any covert channels

NiStar: First verified DIFC OS

 Resembles an exokernel with finite interface design

e 46 system calls and exception handlers
e Supports musl C stdlib using Linux emulation, file system, lwip network service

* Enforces information flow among small number of object types

e Labels, containers, threads, gates, page-table pages, user pages, quanta
e Each object is assigned three labels: Secrecy S, integrity I, ownership O

* Simple policy: Given two objects with domains £; and L,:

* L1 = (51,11,01), Ly = (S53,13,05)
i Ll "’W‘)Lz P (51_01 QSZUOZ)/\(IZ _02 gll UOl)

NiStar Scheduler

* New object types to close channel in scheduler

<0 —m—m—m—m—m—m—m—m———
% 4518 NiStar scheduler = -
=30 round-robin scheduler
S 20 k

0 100 200 300 400 500

elapsed quanta
NiStar closes logical time channel in scheduler

Other systems

Subset of ARINC 653
* Industrial standard for avionics systems
* Reproduced three known bugs in the specification

NiKOS:
* Small Unix-like OS kernel mirroring mCertiKOS [PLDI ‘16]
* Process isolation policy

Implementation

Component NiStar NiKOS ARINC 653
Information flow policy 26 14 33
Interface specification 714 82 240
Observational equivalence 127 56 80
Interface implementation 3,155 343 -
User-space implementation 9,348 389 -

Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)

Implementation

Component NiStar NiKOS ARINC 653
Information flow policy 26 14 33
Interface specification 714 82 240
Observational equivalence 127 56 80
Interface implementation 3,155 343 -
User-space implementation 9,348 389 -
Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)

Concise policy

Low proof burden

* NiStar:
* Six months for the first prototype implementation
* Six weeks on verification

* NiKOS: two weeks

e ARINC 653: one week

Conclusion

* Verification-driven interface design

e Systematic way to design secure interfaces
* Interactive workflow with counterexample-based debugging

* First verified DIFC system

* Low proof burden

U NSAﬁ

https://nickel.unsat.systems

