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Enforcing information flow control is critical





Covert channels through error codes



Eliminating unintended flows is difficult

• Covert channels: A channel not intended for information 
flow [Lampson ‘73]

• Covert channels are often inherent in interface design

• Examples of covert channels in interfaces:
• ARINC 653 avionics standard [TACAS ‘16]

• Floating labels in Asbestos [Oakland ‘09, OSDI ‘06]
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• Extends prior work of push-button verification:
• Yggdrasil [OSDI ‘16] & Hyperkernel [SOSP ‘17]

• Limitations
• Finite interface, expressible using SMT. 

• Hardware-based side channels not in scope and no concurrency.

Our approach: Verification-driven interface design

Specify policy Design interface
Verify interface 
against policy

Counterexample



Contributions

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of 
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks
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Covert channel in resource names

Thread 1 Thread 2

Policy: Thread 1 and Thread 2 should not communicate

5

11 spawn  → 3

12
spawn  → 3+1

…

spawn  → 3+5

13 spawn  → 3+5+1

Design: Spawn with sequential PID allocation

Examples of covert channels
•Resource names

•Resource exhaustion

• Statistical information

• Error handling

• Scheduling

•Devices and services
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Noninterference intuition

Process 2:
spawn → 3

Process 1:
spawn 5 times

Process 2:
spawn → 9

Process 2:
spawn → 3

Process 2:
spawn → 4

Process 1 interferes with Process 2



Information flow policies in Nickel

• Set of domains 𝒟: e.g., processes 

• Can-flow-to relation ⇝⊆ (𝒟 × 𝒟): permitted flow between domains

• Function dom: (𝐴 × 𝑆) → 𝒟: maps an action and state to a domain



Information flow policies in Nickel

• Set of domains 𝒟: e.g., processes 

• Can-flow-to relation ⇝⊆ (𝒟 × 𝒟): permitted flow between domains

• Function dom: (𝐴 × 𝑆) → 𝒟: maps an action and state to a domain

Flexible definition enables broad set of policies

• Can-flow-to relation can be intransitive

• State dependent dom



Noninterference definition

sources 𝜖, 𝑢, 𝑠 ≔ 𝑢

sources 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠 ≔ ቐ
sources 𝑡𝑟, 𝑢, step 𝑠, 𝑎 ∪ dom 𝑎, 𝑠 if ∃𝑣 ∈ sources(𝑡𝑟, 𝑢, step 𝑠, 𝑎 . dom 𝑎, 𝑠 ⇝ 𝑢

sources 𝑡𝑟, 𝑢, step 𝑠, 𝑎 otherwise

purge 𝜖, 𝑢, 𝑠 ≔ 𝜖

purge 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠 ≔ ቐ
𝑎 ∘ tr′ 𝑡𝑟′ ∈ purge 𝑡𝑟, 𝑢, step 𝑠, 𝑎 } if dom 𝑎, 𝑠 ∈ sources 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠

𝑎 ∘ tr′ 𝑡𝑟′ ∈ purge 𝑡𝑟, 𝑢, step 𝑠, 𝑎 } ∪ purge(𝑡𝑟, 𝑢, 𝑠) otherwise

∀ 𝑡𝑟′ ∈ purge 𝑡𝑟, dom 𝑎, run init, 𝑡𝑟 , init . output run init,𝑡𝑟 ,𝑎 = output run(init, 𝑡𝑟′ , 𝑎)



Given a policy, purging actions “irrelevant” 
to a domain should not affect the output of 

the actions for that domain



Automated verification of noninterference

• ℐ init ∧ ℐ 𝑠 ⇒ ℐ step 𝑠, 𝑎

• ≈
𝑢

is reflexive, symmetric, and transitive

• ℐ 𝑠 ∧ ℐ 𝑡 ∧ 𝑠 ≈
𝑢
𝑡 ⇒ (dom 𝑎, 𝑠 ⇝ 𝑢 ⇔ dom 𝑎, 𝑡 ⇝ 𝑢)

• ℐ 𝑠 ∧ dom 𝑎, 𝑠 ⇝ 𝑢 ⇒ s ≈
𝑢
step(𝑠, 𝑎)



Automated verification of noninterference

• ℐ init ∧ ℐ 𝑠 ⇒ ℐ step 𝑠, 𝑎

• ≈
𝑢

is reflexive, symmetric, and transitive

• ℐ 𝑠 ∧ ℐ 𝑡 ∧ 𝑠 ≈
𝑢
𝑡 ⇒ (dom 𝑎, 𝑠 ⇝ 𝑢 ⇔ dom 𝑎, 𝑡 ⇝ 𝑢)

• ℐ 𝑠 ∧ dom 𝑎, 𝑠 ⇝ 𝑢 ⇒ s ≈
𝑢
step(𝑠, 𝑎)

Proof strategy: unwinding conditions
• Together imply noninterference
• Requires reasoning only about individual actions
• Amenable to automated reasoning using SMT



Outline

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of 
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks
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Verification-driven interface design in Nickel

Specify policy

1

Design interface

2
Verify interface 
against policy

3

Counterexample

Implement 
interface

4
Verify implementation 

against interface

5
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pid 1 pid 2 ... pid n

Policy:
n processes that are not allowed 
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Nickel 
verifier

SMT

Information flow 
policy

Trusted Counter-
example

Bug

Interface 
specification

• Partition names among domains

• Reduce flows to the scheduler

• Perform flow checks early

• Limit resource usage with quotas

• Encrypt names from a large space

• Expose or enclose nondeterminism

Design patterns

Observation 
function
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Trusted

Interface 
specification

Counter-
example

Channel

Verified

Observation 
function



Outline

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of 
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks



Decentralized information flow control (DIFC)

• Flexible mechanism to enforce security policies [SOSP ’97]
• Each object assigned labels for tracking and mediating data access

• Several operating system kernels enforce DIFC:
• Asbestos [SOSP ’05] 
• HiStar [OSDI ’06]
• Flume [SOSP ’07]

• Our goal: Build a DIFC OS kernel without any covert channels



NiStar: First verified DIFC OS

• Resembles an exokernel with finite interface design
• 46 system calls and exception handlers

• Supports musl C stdlib using Linux emulation, file system, lwip network service

• Enforces information flow among small number of object types

• Labels, containers, threads, gates, page-table pages, user pages, quanta

• Each object is assigned three labels: Secrecy 𝑆, integrity 𝐼, ownership 𝑂

• Simple policy: Given two objects with domains ℒ1 and ℒ2:

• ℒ1 = ⟨𝑆1, 𝐼1 , 𝑂1⟩, ℒ2 = ⟨𝑆2, 𝐼2, 𝑂2⟩

• ℒ1 ⇝ ℒ2 ≔ (𝑆1 − 𝑂1 ⊆ 𝑆2 ∪𝑂2) ∧ (𝐼2 −𝑂2 ⊆ 𝐼1 ∪ 𝑂1)



NiStar Scheduler

• New object types to close channel in scheduler

NiStar closes logical time channel in scheduler



Other systems

Subset of ARINC 653

• Industrial standard for avionics systems

• Reproduced three known bugs in the specification

NiKOS: 

• Small Unix-like OS kernel mirroring mCertiKOS [PLDI ‘16]

• Process isolation policy



Implementation

Component NiStar NiKOS ARINC 653

Information flow policy 26 14 33

Interface specification 714 82 240

Observational equivalence 127 56 80

Interface implementation 3,155 343 -

User-space implementation 9,348 389 -

Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)



Implementation

Component NiStar NiKOS ARINC 653

Information flow policy 26 14 33

Interface specification 714 82 240

Observational equivalence 127 56 80

Interface implementation 3,155 343 -

User-space implementation 9,348 389 -

Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)

Concise policy



Low proof burden

• NiStar:
• Six months for the first prototype implementation
• Six weeks on verification

• NiKOS: two weeks

• ARINC 653: one week



Conclusion

•Verification-driven interface design
• Systematic way to design secure interfaces

• Interactive workflow with counterexample-based debugging

• First verified DIFC system
• Low proof burden

https://nickel.unsat.systems


