
Nickel
A Framework for Design and Verification of

Information Flow Control Systems

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney,

James Bornholt, Emina Torlak, and Xi Wang

.org

Enforcing information flow control is critical

Covert channels through error codes

Eliminating unintended flows is difficult

• Covert channels: A channel not intended for information
flow [Lampson ‘73]

• Covert channels are often inherent in interface design

• Examples of covert channels in interfaces:
• ARINC 653 avionics standard [TACAS ‘16]

• Floating labels in Asbestos [Oakland ‘09, OSDI ‘06]

Eliminating unintended flows is difficult

• Covert channels: A channel not intended for information
flow [Lampson ‘73]

• Covert channels are often inherent in interface design

• Examples of covert channels in interfaces:
• ARINC 653 avionics standard [TACAS ‘16]

• Floating labels in Asbestos [Oakland ‘09, OSDI ‘06]

• Extends prior work of push-button verification:
• Yggdrasil [OSDI ‘16] & Hyperkernel [SOSP ‘17]

• Limitations
• Finite interface, expressible using SMT.

• Hardware-based side channels not in scope and no concurrency.

Our approach: Verification-driven interface design

Specify policy Design interface
Verify interface
against policy

Counterexample

Contributions

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks

Covert channel in resource names

Process 1 Process 2

Policy: Process 1 and Process 2 should not communicate

Design: Spawn with sequential PID allocation

Covert channel in resource names

Process 1 Process 2
5

Design: Spawn with sequential PID allocation

Policy: Process 1 and Process 2 should not communicate

Covert channel in resource names

Process 1 Process 2
5

11 spawn → 3

Design: Spawn with sequential PID allocation

Policy: Process 1 and Process 2 should not communicate

Covert channel in resource names

Process 1 Process 2
5

11 spawn → 3

12
spawn → 3+1

…

spawn → 3+5

Design: Spawn with sequential PID allocation

Policy: Process 1 and Process 2 should not communicate

Covert channel in resource names

Process 1 Process 2
5

11 spawn → 3

12
spawn → 3+1

…

spawn → 3+5

13 spawn → 3+5+1

Design: Spawn with sequential PID allocation

Policy: Process 1 and Process 2 should not communicate

Covert channel in resource names

Thread 1 Thread 2

Policy: Thread 1 and Thread 2 should not communicate

5

11 spawn → 3

12
spawn → 3+1

…

spawn → 3+5

13 spawn → 3+5+1

Design: Spawn with sequential PID allocation

Examples of covert channels
•Resource names

•Resource exhaustion

• Statistical information

• Error handling

• Scheduling

•Devices and services

Noninterference intuition

Process 2:
spawn → 3

Process 1:
spawn 5 times

Process 2:
spawn → 9

Noninterference intuition

Process 2:
spawn → 3

Process 1:
spawn 5 times

Process 2:
spawn → 9

Process 2:
spawn → 3

Process 2:
spawn → 4

Noninterference intuition

Process 2:
spawn → 3

Process 1:
spawn 5 times

Process 2:
spawn → 9

Process 2:
spawn → 3

Process 2:
spawn → 4

Process 1 interferes with Process 2

Information flow policies in Nickel

• Set of domains 𝒟: e.g., processes

• Can-flow-to relation ⇝⊆ (𝒟 × 𝒟): permitted flow between domains

• Function dom: (𝐴 × 𝑆) → 𝒟: maps an action and state to a domain

Information flow policies in Nickel

• Set of domains 𝒟: e.g., processes

• Can-flow-to relation ⇝⊆ (𝒟 × 𝒟): permitted flow between domains

• Function dom: (𝐴 × 𝑆) → 𝒟: maps an action and state to a domain

Flexible definition enables broad set of policies

• Can-flow-to relation can be intransitive

• State dependent dom

Noninterference definition

sources 𝜖, 𝑢, 𝑠 ≔ 𝑢

sources 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠 ≔ ቐ
sources 𝑡𝑟, 𝑢, step 𝑠, 𝑎 ∪ dom 𝑎, 𝑠 if ∃𝑣 ∈ sources(𝑡𝑟, 𝑢, step 𝑠, 𝑎 . dom 𝑎, 𝑠 ⇝ 𝑢

sources 𝑡𝑟, 𝑢, step 𝑠, 𝑎 otherwise

purge 𝜖, 𝑢, 𝑠 ≔ 𝜖

purge 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠 ≔ ቐ
𝑎 ∘ tr′ 𝑡𝑟′ ∈ purge 𝑡𝑟, 𝑢, step 𝑠, 𝑎 } if dom 𝑎, 𝑠 ∈ sources 𝑎 ∘ 𝑡𝑟, 𝑢, 𝑠

𝑎 ∘ tr′ 𝑡𝑟′ ∈ purge 𝑡𝑟, 𝑢, step 𝑠, 𝑎 } ∪ purge(𝑡𝑟, 𝑢, 𝑠) otherwise

∀ 𝑡𝑟′ ∈ purge 𝑡𝑟, dom 𝑎, run init, 𝑡𝑟 , init . output run init,𝑡𝑟 ,𝑎 = output run(init, 𝑡𝑟′ , 𝑎)

Given a policy, purging actions “irrelevant”
to a domain should not affect the output of

the actions for that domain

Automated verification of noninterference

• ℐ init ∧ ℐ 𝑠 ⇒ ℐ step 𝑠, 𝑎

• ≈
𝑢

is reflexive, symmetric, and transitive

• ℐ 𝑠 ∧ ℐ 𝑡 ∧ 𝑠 ≈
𝑢
𝑡 ⇒ (dom 𝑎, 𝑠 ⇝ 𝑢 ⇔ dom 𝑎, 𝑡 ⇝ 𝑢)

• ℐ 𝑠 ∧ dom 𝑎, 𝑠 ⇝ 𝑢 ⇒ s ≈
𝑢
step(𝑠, 𝑎)

Automated verification of noninterference

• ℐ init ∧ ℐ 𝑠 ⇒ ℐ step 𝑠, 𝑎

• ≈
𝑢

is reflexive, symmetric, and transitive

• ℐ 𝑠 ∧ ℐ 𝑡 ∧ 𝑠 ≈
𝑢
𝑡 ⇒ (dom 𝑎, 𝑠 ⇝ 𝑢 ⇔ dom 𝑎, 𝑡 ⇝ 𝑢)

• ℐ 𝑠 ∧ dom 𝑎, 𝑠 ⇝ 𝑢 ⇒ s ≈
𝑢
step(𝑠, 𝑎)

Proof strategy: unwinding conditions
• Together imply noninterference
• Requires reasoning only about individual actions
• Amenable to automated reasoning using SMT

Outline

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks

Verification-driven interface design in Nickel

Specify policy

1

Design interface

2
Verify interface
against policy

3

Counterexample

Verification-driven interface design in Nickel

Specify policy

1

Design interface

2
Verify interface
against policy

3

Counterexample

Implement
interface

4
Verify implementation

against interface

5

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

pid 1 pid 2 ... pid n

Policy:
n processes that are not allowed
to communicate with each other

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Interface
specification

Information flow
policy

Trusted

Observation
function

Information flow
policy

Observation
function

Trusted

Interface
specification

Information flow
policy

Observation
function

Trusted

Interface
specification

Information flow
policy

Observation
function

Trusted

Interface
specification

Information flow
policy

Observation
function

Trusted

Interface
specification

Nickel
verifier

SMT

Information flow
policy

Observation
function

Trusted

Interface
specification

Nickel
verifier

SMT

Information flow
policy

Trusted

Interface
specification

Counter-
example

Channel

Observation
function

Nickel
verifier

SMT

Information flow
policy

Trusted Counter-
example

Bug

Interface
specification

• Partition names among domains

• Reduce flows to the scheduler

• Perform flow checks early

• Limit resource usage with quotas

• Encrypt names from a large space

• Expose or enclose nondeterminism

Design patterns

Observation
function

Nickel
verifier

SMT

Information flow
policy

Trusted Counter-
example

Bug

Interface
specification

Observation
function

Nickel
verifier

SMT

Information flow
policy

Trusted Counter-
example

Bug

Interface
specification

Observation
function

Nickel
verifier

SMT

Information flow
policy

Trusted

Interface
specification

Counter-
example

Channel

Observation
function

Nickel
verifier

SMT

Information flow
policy

Trusted

Interface
specification

Counter-
example

Channel

Verified

Observation
function

Outline

•New formulation and proof strategy for noninterference

•Nickel: A framework for design and verification of
information flow control (IFC) systems

• Experience building three systems using Nickel
• First formally verified decentralized IFC OS kernel
• Low proof burden: order of weeks

Decentralized information flow control (DIFC)

• Flexible mechanism to enforce security policies [SOSP ’97]
• Each object assigned labels for tracking and mediating data access

• Several operating system kernels enforce DIFC:
• Asbestos [SOSP ’05]
• HiStar [OSDI ’06]
• Flume [SOSP ’07]

• Our goal: Build a DIFC OS kernel without any covert channels

NiStar: First verified DIFC OS

• Resembles an exokernel with finite interface design
• 46 system calls and exception handlers

• Supports musl C stdlib using Linux emulation, file system, lwip network service

• Enforces information flow among small number of object types

• Labels, containers, threads, gates, page-table pages, user pages, quanta

• Each object is assigned three labels: Secrecy 𝑆, integrity 𝐼, ownership 𝑂

• Simple policy: Given two objects with domains ℒ1 and ℒ2:

• ℒ1 = ⟨𝑆1, 𝐼1 , 𝑂1⟩, ℒ2 = ⟨𝑆2, 𝐼2, 𝑂2⟩

• ℒ1 ⇝ ℒ2 ≔ (𝑆1 − 𝑂1 ⊆ 𝑆2 ∪𝑂2) ∧ (𝐼2 −𝑂2 ⊆ 𝐼1 ∪ 𝑂1)

NiStar Scheduler

• New object types to close channel in scheduler

NiStar closes logical time channel in scheduler

Other systems

Subset of ARINC 653

• Industrial standard for avionics systems

• Reproduced three known bugs in the specification

NiKOS:

• Small Unix-like OS kernel mirroring mCertiKOS [PLDI ‘16]

• Process isolation policy

Implementation

Component NiStar NiKOS ARINC 653

Information flow policy 26 14 33

Interface specification 714 82 240

Observational equivalence 127 56 80

Interface implementation 3,155 343 -

User-space implementation 9,348 389 -

Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)

Implementation

Component NiStar NiKOS ARINC 653

Information flow policy 26 14 33

Interface specification 714 82 240

Observational equivalence 127 56 80

Interface implementation 3,155 343 -

User-space implementation 9,348 389 -

Common kernel infrastructure 4,829 (shared by NiStar / NiKOS)

Concise policy

Low proof burden

• NiStar:
• Six months for the first prototype implementation
• Six weeks on verification

• NiKOS: two weeks

• ARINC 653: one week

Conclusion

•Verification-driven interface design
• Systematic way to design secure interfaces

• Interactive workflow with counterexample-based debugging

• First verified DIFC system
• Low proof burden

https://nickel.unsat.systems

