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7,768 views | Nov 20, 2018, 10:25am

Facebook And Instagram Go
Down In Second Snag This Week

fip U Janet Burns ®
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I cover Al cybersecurity, culture, drugs, and more.

Global Facebook users have reported outages this morning on the web's

largest social media platform, as well as on its sister platform Instagram.

On Tuesday, social media users took to Twitter and other sites to report
frequent log-in and site loading issues on Facebook, which the company

says it is currently working to fix.
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Here's How IBM Crashed Australia's First Online Census

0000

By REUTERS November 25, 2016

(SYDNEY) - International Business Machines (IBM, +0.88%) failed in its
handling of the A$10 million ($7.4 million) IT contract for Australia’s
first predominantly online census, Australian Prime Minister Malcolm

Turnbull said on Friday.
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Automated programming successes

Verified Synthesized
SQL optimizers network configs

[Chu et al, VLDB'18] [McClurg et al, PLDI'15]

Synthesized Verified
crypto primitives operating systems

[Erbsen et al, Oakland’'19] [Nelson et al, SOSP’17]

Synthesized Synthesized
biology experiments memory models

[Koksal et al, POPL'13] [Bornholt et al, PLDI'17]

Synthesized
educational models

[Butler et al, VMCAI'18]
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Intractability Specification

Most problems in automated Automated programming requires
programming are intractable a specification, which is often
(many undecidable). difficult to construct and audit.

Domain specialization

Specialization reduces the size  Specialization allows for concise
of the search space, eliminating and expressive specifications
irrelevant programs/behaviors.  that capture programmer intent.
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Automated programming stack

Domain-specific tools

(define (interpret prog inputs)
(make-registers prog inputs)
(for ([stmt progl)

Solver-aided languages .

front-end abstractions for verification/synth (aetine oros CTRTEERT)
(B out (apply op args))l))
(load (last)))

Symbolic evaluation ]
algorithms to translate programs to SAT/SM

SAT/SMT solving
Improvements in scale and expressiveness
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Memory models define the memory
ordering behavior of multiprocessors

Thread 1 Thread 2
OX=1 Oy =1
Oi1f Y == 0: O if X == 0:
print “hello” print “goodbye”

All variables initialized to O

Can this print... hello? 0000
goodbye? ©0© O
nothing? 0000
both? )

"No! (sequential consistency)

{ 14 Yeah!
4 We wanna go fast!
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Memory models define the memory
ordering behavior of multiprocessors

...correctness of
my compiler...

Compiler &=
writers 458

...possible low-
level behaviors...

...rules to verify
against...

Verification

tools

Kernel/library é
developers &

Litmus tests
and prose

X86 [Sewell et al, CACM’'10]
Vv
PowerPC [Alglave et al, CAV'10, etc] . A4 3 =>€ X
N
ARM [Flur et al, POPL'16] > C A U
Formal

specifications



MemSynth: automated programming for
memory consistency models

Litmus tests Formal
specifications



MemSynth: automated programming for
memory consistency models

Synthesize specifications
from litmus tests

Litmus tests Formal
specifications



MemSynth: automated programming for
memory consistency models

Synthesize specifications
from litmus tests

—— Detect ambiguities in
. - synthesized models
Litmus tests Formal
specifications




MemSynth: automated programming for
memory consistency models

x86: 2 seconds
PowerPC: 12 seconds

Synthesize specifications

from litmus tests v Vo= X
N 4 €
Detect ambiguities in c AU
: - synthesized models
Litmus tests Formal

specifications

x86: 4 ambiguities
PowerPC: 9 ambiguities



MemSynth: automated programming for
memory consistency models

Litmus tests Memory models Synthesis
 aw»__ aS relations as constraints via sketches

inty LG : | v VH i N

Litmus tests Formal
specifications
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Memory models as relational constraints

Program i
extracted

po =

Progra

A memon

Written a

|I>

M(T, E)

(&&

(&&
(&&
(in rf (& (-> Writes Reads) (join loc (~ loc)) (join data (~ data))))
(no (- (join rf (~ rf)) iden))
(all ((r4 (- Reads (join Writes rf)))) (= (join r4 data) Zero)))
(&&
(in ws (& (-> Writes Writes) (join loc (~ loc))))
(no (& iden ws))
(in (join ws ws) ws)
(all
((r5 Writes))
(all ((r6 (- (& Writes (join loc (join r5 loc))) r5))) (or (in (-> r5 r6) ws) (in (-> r6 r5) ws))))
(tn ws (join loc (~ loc)))))
(no
(&
(A
(+
(+ rf ws (+ (join (~ rf) ws) (& (-> (- Reads (join Writes rf)) Writes) (join loc (~ loc)))))
(& po (join loc (~ loc)))))
iden))
(no (& (© (+ po rf)) iden))
(all
((r7 Writes))
(=>
(& (in r7 (- (join univ ws) (join ws univ))) (some (join (join r7 loc) finalValue)))
(= (join r7 data) (join (join r7 loc) finalValue))))
(no
(&
(/\
(+
(& po dp)
WS
(+ (join (~ rf) ws) (& (-> (- Reads (join Writes rf)) Writes) (join loc (~ loc))))
(-> none none)
(+
(™ (+ (+ (join (:> po Syncs) po) (join (join (:> po Syncs) po) rf)) (join rf (join (:> po Syncs) po))))
(A
(+
(+
(& (join (:> po Lwsyncs) po) (+ (-> Writes Writes) (-> Reads MemoryEvent)))
(:> (join rf (& (join (:> po Lwsyncs) po) (+ (-> Writes Writes) (-> Reads MemoryEvent)))) Writes))
(<: Reads (join (& (join (:> po Lwsyncs) po) (+ (-> Writes Writes) (-> Reads MemoryEvent))) rf)))))))
iden)))
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Memory models as relational constraints

Program relations Execution relations
extracted from program text: describe dynamic behavior:
po = {(©,0), (0,0)] rf =1{0,0), (0,0);

Program order Reads-from

A memory model constrains the allowed executions of a program

Written as a predicate in relational logic

A memory model allows a test T
if there exists an execution E
that satisfies the predicate

M(T,E) 2 (no (& (©~ (+ po rf)) iden))

...by forbidding cycles Constraining the possible
involving rf u po values of rf...
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Synthesis from a memory model sketch

A sketch specifies things we
know (e.g., want a happens-
before ordering)...

MT E)= (no (& (© (+ 2?22 ??)) iden))

Expression holes for po

a synthesizer to rf

complete po + rf
po & rf

po - rf



Synthesis from a memory model sketch

A ENGIE SREEIES Lalnzs B ...and defines the shape of

know (e.g., v\{ant a happens- the parts we don’t know
before ordering)...

MT E)= (no (& (™ (+ 2?22 ??)) iden))

Expression holes for po

a synthesizer to rf
complete po + rf
po & rf

po - rf
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Memory model frameworks

MT,E)2 (no (& (© (+ ws rf 2?2

Sequential
consistency

Total store
order (x86)

Preserved program order:
same-thread reorderings

PO

po - (Wr-Rd)

?? )) iden))

Global reads-from:
inter-thread reorderings

rf

rf & SameThd

[Alglave et al, CAV'10]



Ocelot DSL for relational logic with holes

Expression holes for
a synthesizer to
complete

MT,E)2 (no (& (™ (+ ws rf 2?2 2?27 )) iden))

Ocelot embeds relational logic in
the Rosette solver-aided language
[Torlak & Bodik 2014]

Also in use for SQL
qguery synthesis and
protocol reasoning

D http://ocelot.tools
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pattern for synthesis
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Memory model M
Forbidden litmus tests IM.v TeT-. v E. -M(T,E)

Higher-order quantification

over relations! &, Memory model sketch M
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The synthesis query

M allows T:
3 E. M(T, E)
Allowed litmus tests IM.v TeT+*. 3 E. M(T,E)
Memory model M
Forbidden litmus tests IM.v TeT-. v E. -M(T,E)
Handled by incremental Handled by a quantified

synthesis engine Memory model sketch M poolean formula (QBF) solver
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Incremental synthesis

Handled by a quantified

boolean formula (QBF) solver
T T T T T T T ~

Allowed litmus tests == Synth
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Incremental synthesis

Handled by a quantified

boolean formula (QBF) solver
T T T T T T T

Allowed litmus tests
M)

Forbidden litmus tests

8 8 B 1 1 1 1

Empirically, need very
few iterations to
converge

Completed memory model M
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Disambiguating synthesized models

Key idea: after synthesis, is there a
different memory model that also
explains the input tests?

Allowed litmus tests
Completed memory model M

Forbidden litmus tests Am blg
Litmus test T

Completed memory model M
Difference between M
X and M is not just
Memory model sketch M syntactic: they disagree
about test T
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Synthesizing existing memory models

x86

PowerPC

10 tests

/68 tests
[Alglave et al, CAV'10]

Synthesis

v 2 seconds

Not equivalent to
TSO!

v 12 seconds

Not equivalent to
published model!

Ambiguity

4 new tests
mfence, xchg

9 new tests
sync, lwsync



MemSynth: automated programming for
memory consistency models
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Synthesize specifications

S from litmus tests v V o= X
—— Detect ambiguities in c & U
: synthesized models
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PowerPC: 9 ambiguities
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Scaling a synthesis tool is hard work

12000 pywPm o e
Finding these optimization
opportunities is the key to

- good performance and
new functionality

9000 | ‘ewfunctionality T
[
&
2 6000 |
E
I_

3000

0

January  February March April May June
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A symbolic profiler

iIdentifies optimization
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Symbolic profiling

12000 - | : :

m A symbolic profiler
iIdentifies optimization
opportunities in an

9000 OPP
automated tool.
)
8 What makes scaling an automated
m .
<< programming tool hard?
—~ 6000
E How does symbolic profiling work?
How effective is symbolic profiling?
3000 yITDORE PIOTITE

0
January  February March April May June
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Symbolic evaluation executes all paths
through a program

(filter even? ‘(Xeo X1 X2 X3))

Does this expression always l Values of list elements are
return only even numbers? () unknown (e.g., verifying

~(even? )y \ filter for all inputs)
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Symbolic evaluation executes all paths
through a program

(Llength (filter even? ‘(Xo X1 X2 X3)))

Does this expression always l Values of list elements are
return only even numbers? () unknown (e.g., verifying

~(even? )y \ filter for all inputs)
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Symbolic evaluation executes all paths
through a program

(Llength (filter even? ‘(Xo X1 X2 X3)))

Does this expression always l Values of list elements are
return only even numbers? () unknown (e.g., verifying

~(even? )y \ filter for all inputs)

“() “(X1) “(Xo) “(Xo X1)
7/ / \ / N\

“(x2) (X1 X2) “(Xo) “(X

/Z /j / yeven? .

X
X2 X3) “(X1) (X1 Xx3) (X1 X2) (X1 X2 X3) “(x0) (X
1

N

2 1 2 2 3



Symbolic evaluation techniques

Symbolic Bounded
execution model checking
Always fork into Merge after every
independent paths fork (fewer paths,
(more paths, but but less concrete)

more concrete)



Symbolic evaluation techniques

Crucible [Galois, Inc.]

(length (filter € 1?7 ‘(Xo X1 X2 X3)))
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~7 S VRN N>
. 5 :
e e et Jalangi [Sen etal 2014]  Rosette [Torlak & Bodik 2014
Symbolic Bounded
execution model checking
Always fork into Merge after every
independent paths fork (fewer paths,
(more paths, but but less concrete)

more concrete)



Symbolic evaluation techniques

Crucible [Galois, Inc.]

(length (filter € 1?7 ‘(%o X1 X2 X3)))

x/;‘/:))'(xfr{x‘jjjw(x. x‘z)/(::( (1) ii:ﬁ:ﬂ) xz)::l:%‘m %2 x;;'l:; A .
R R Jalangi [Sen et al 2014] Rosette [Torlak & Bodik 2014]

e ———————

Symbolic Controlling the trade-off Bounded
execution between these strategies model checking
. is key to good scalability
Always fork into Merge after every
independent paths fork (fewer paths,
(more paths, but but less concrete)

more concrete)



Two data structures to summarize

symbolic evaluation

eveny Ne‘nv Xo)

“(Xo)

-(even? :/ Y‘ven7 X1) -(even? Xxi1) (even? x1)

“(Xo) “(Xo X1)

Symbolic evaluation graph
Reflects the evaluator’s strategy
for all-paths execution of the program

K

(even? Xp) (even? Xxi1)

Symbolic heap
Shape of all symbolic values
created by the program



Two data structures to summarize
symbolic evaluation

even/ Ne‘n Xo A IA g A
“(Xo) - -
(even? y Y‘ven X1 -(even? Xi) (even? xi1)
(even? Xp) (even? Xi1)
“(Xo) “(Xo X1)
Symbolic evaluation graph Symbolic heap
Reflects the evaluator’s strategy Shape of all symbolic values

for all-paths execution of the program  created by the program

Any symbolic evaluation technique can be
summarized by these two data structures



Analyzing symbolic data structures

X

O

z

— first-k-even

8 the-profiled-thunk

0.0:)Os 0.6I553 1 .3:)93 1 .9|64s 2.6I1 8s 3.2I73s 3.9|283 4.5|823 5.2!375 5.8I923 6.5|46$

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases

filter 4.3 —— 1249 137408 131164 4288 93664

take 2.8 n— 4692 50312 49986 2209 49986

andmap 0.3n 94 14180 14180 0 4097

the-profiled-thunk

0.11 511

66

0 0 0



Analyzing symbolic data structures

For each procedure, measure metrics that
summarize the evolution of the symbolic
evaluation graph and symbolic heap

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases
filter 4.3 e— 1249 137408 131164 4288 93664
take 2.8 n— 4692 50312 49986 2209 49986
andmap 0.3n 94 14180 14180 0 4097
the-profiled-thunk 0.1 1 511 66 0 0 0

Summarize metrics as a score to rank
procedures in the program



Analyzing symbolic data structures

The most likely
bottleneck is not the
slowest procedure

Function S Term Count
filter {438 1 137408
take j 50312
andmap 0.3 94 14180
the-profiled-thunk 0.1 1 511 66

Summarize metrics as a score to rank
procedures in the program

For each procedure, measure metrics that
summarize the evolution of the symbolic

‘evaluation graph and symbolic heap

Unused Terms Union Size Merge Cases

131164 4288 93664
49986 2209 49986
14180 0 4097

0 0 0



Three symbolic profilers

We developed two implementations:
e The Rosette solver-aided language (Racket)

e The Jalangi dynamic analysis framework (JavaScript)

Since publication, based on our work:

e The Crucible symbolic simulation library (C, Java, ...) by Galois



Three symbolic profilers

We developed two implementations:
e The Rosette solver-aided language (Racket)  Today

e The Jalangi dynamic analysis framework (JavaScript)

Since publication, based on our work:

e The Crucible symbolic simulation library (C, Java, ...) by Galois



Symbolic profiling in practice

Case studies: fixed 8 performance issues in 15 Rosette tools

Refinement type checker for Ruby [vmcaris
Cryptographic protocol verifier [Fm18]

SQL query verifier [cIDR'17]

Safety-critical radiotherapy system verifier [cav14]
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Case studies: fixed 8 performance issues in 15 Rosette tools
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Symbolic profiling in practice

Case studies: fixed 8 performance issues in 15 Rosette tools

Refinement type checker for Ruby [vmcar1sg] 6x speedup
Cryptographic protocol verifier [Fm18] 29x speedup
SQL query verifier [ciDr17] /5% speedup
Safety-critical radiotherapy system verifier [cav14] 290x speedup

User study: 8 Rosette users tasked with finding known performance
Issues in 4 programs

Users solved every task more quickly when they had access to
symbolic profiling
6 failures without symbolic profiling vs. none with it



Symbolic profiling
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- A symbolic profiler
iIdentifies optimization
opportunities in an

“automated tool.
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Automated tools are worth building
The case of memory models [pLDI'17]

Building them can be made systematic
Symbolic profiling [oopsLA18]

The future is more automation
Automating the automated programming stack
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Automated programming abstractions

File systems Operating systems Memory models
[ASPLOS’16, OSDI'16] [SOSP’17, OSDI'18] [PLDI'17]

Solver-aided languages Metasketches
front-end abstractions for verification/synthesis [POPL'16]

Symbolic
profiling

[OOPSLA'18]

Symbolic evaluation
algorithms to translate programs to SAT/SMT

SAT/SMT solving
Improvements in scale and expressiveness
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Diaghosing SMT solver behavior

& Z3 version 4.8.3 slower and unable to solve problem that was solved by Z3 version 4.8.1 string
#1979 by pjljvandelaar was closed on Dec 11, 2018

@& Slow performance on simple query that uses equalities for assignments
#1602 by 4tXJ7f was closed on Nov 25, 2018

@& The solver slows down of java version when using multi-thread
#1504 by destinyfucker was closed on Feb 24, 2018

@& bv2int and int2bv slow?
#1481 by kren1 was closed on Feb 14, 2018

® Incremental floating point is much slower than one-shot on certain short problems
#1459 opened on Jan 24, 2018 by arotenberg

® Suspiciously slow on simple example
#1425 opened on Dec 31, 2017 by DennisYurichev

& Performance surprisingly slow: since it can be solved very fast... string
#1352 by pjljvandelaar was closed on Dec 12, 2018

@& (+ (- 1) str.len) instead of (- 1 str.len) make problem very slow to execute
#1140 by jawline was closed on Jul 11, 2017

SAT/SMT solving

Improvements in scale and expressiveness

(J7
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Diaghosing SMT solver behavior

File systems Operating systems Memory models
[ASPLOS’16, OSDI'16] [SOSP’17, OSDI'18] [PLDI'17]

Solver-aided languages Metasketches
front-end abstractions for verification/synthesis [POPL'16]

Symbolic
profiling

[OOPSLA'18]

Symbolic evaluation
algorithms to translate programs to SAT/SMT

SAT/SMT solving Solver
Improvements in scale and expressiveness profiling




Self-optimizing automated tools

File systems Operating systems Memory models
[ASPLOS’16, OSDI'16] [SOSP’17, OSDI'18] [PLDI'17]

Solver-aided languages Metasketches
front-end abstractions for verification/synthesis [POPL'16]

Exploit this profiling data for
profile-guided optimization

Symbolic
profiling

[OOPSLA'18]

Symbolic evaluation
algorithms to translate programs to SAT/SMT

SAT/SMT solving Solver
Improvements in scale and expressiveness profiling




Application opportunities

File systems Operating systems Memory models
[ASPLOS’16, OSDI'16] [SOSP’17, OSDI'18] [PLDI'17]

Hardware accelerator K 1 ] High-performance

design/programming "~ low-precision kernels




File systems Operating systems Memory models
[ASPLOS’16, OSDI'16] [SOSP’17, OSDI'18] [PLDI'17]

design/programming * low-precision kernels

Hardware accelerator { 1 N High-performance

New abstractions and tools can empower
programmers to build specialized automated
programming tools that improve software reliability.

Symbolic

Metasketches Solver

POPL'16 profiling ili
| ] OOPSLA'LS profiling




Thanks!

bornholt@Quw.edu
https://unsat.org

'a‘:PLSE sampa UNSA?

New abstractions and tools can empower
programmers to build specialized automated
programming tools that improve software reliability.




