THE UNIVERSITY OF Microsoft
W TEXAS Research

Programming the Internet of
Uncertain <T>hings

James Bornholt University of Washington
Na I\/Ieng University of Texas at Austin
Todd MytkOWiCZ Microsoft Research

Kath ryn S. |\/|d<in|ey Microsoft Research

;\;wﬁ‘ Rl
T

Ly
AN

. .
,,,,,

' :\-\oaw oy
N _‘;N:ﬂ."-‘?:'-‘\“‘\:'

“\\.: !

"\..-’\.

GeoCoordinate PrevLocn Get();
Sleep(5);

GeoCoordinate Location

Get();

PrevLocn = Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

PrevlLocn Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4)
Alert("Keep 1t up!”);

2.59

" AVG. SPEED
" CALORIES
kCal

Pause | Stop

Home
00:23:43

Jake Van Damm

ALTITUDE
ft

2.59

" AVG. SPEED
" CALORIES

Pause | Stop

Home
00:23:43

Jake Van Damm

ALTITUDE
ft

» oL
v « ’ -
| \\k

S TA
)}

!

% Primates

&iM'y'a’.}

’ o . s
N 2D " - !
rT R L

y - My
3 ek /,./r’ e »
. - y

™
\
S e

Prey/8's

,

.
.

e L, |

5

N

N\
-

//
/

Birds & Nests
Insects & Beetles

\

AN ﬂ.é,g's/& Abdomen

1 ’
N
.

- 'I W ‘_""‘! ‘1"
e Eins'&\Whale
N 2 asnaniee -~ o
..‘ E f .Tcklrfv' .
s '
Sy - o L e
;,.Siharks%&vBunch,-,* L. W, ¢ /
—— A . N e 'y : . - 2 oA - 2 y o
R, e ‘ RN Prey/&ISpecie

3 £

y

Birds & Ne\sts“_-‘.‘z

»

/ N
Insects & Beetles L \

Ing

J
..

N
!
J

~
:

lear

l)Fsrcy &iSpeciesM

.. /s
*
I n’v
g .
% N
£ .

) !
(J

Sensors

Ll
1ach

.

7

Shrimps

-
-

e

Aquarium, &

>
e

s & Nests
es

eetl

Bird
ts'& B

~

-

\
Inse

A

.
.
[J

/ lng\

¢
!
!
!

~4
3
\
.
J

~
:

:
H

o Al

-

/
\\

z
I/Fl’rcy &iSpeciesM

Iear
!

Sensors

o L

{

(/(-
ales:

|
!

7 2
-

Wh

" ;:‘\r —’..
5
!

v
- e

hrimps

>
e &
—

e

Aquarium, &

“
.
e

s & Nests
.

Bird
ts°'& Beetles

F+
Insec

S

. o

. = . . , e o oo Res Y5 .:.vg -,
| » oA ! . : O S anae §
\ Dl e : RIS

Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate

10

Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate

10

PrevlLocn Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4)
Alert("Keep 1t up!”);

11

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location
Uncertain<double> Dist =
Distance(LastLocn, Location);

Uncertain<double> Speed = Dist / 5;

Get();

if (Speed > 4)
Alert("Keep 1t up!”);

12

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location
Uncertain<double> Dist =
Distance(LastLocn, Location);

Uncertain<double> Speed = Dist / 5;

Get();

if (Speed > 4)
Alert("Keep 1t up!”);

12

Semantics

Uncertain<T> encapsulates probability
distributions and hides statistical complexity.

e Computing over random variables

e Deciding conditionals

13

Computations

Represent distributions by random samples

14

Computations

Represent distributions by random samples

14

Computations

Represent distributions by random samples

14

Computations

Operators build a Bayesian network rather than
evaluating immediately.

D=A/B

15

Computations

Operators build a Bayesian network rather than
evaluating immediately.

D = A /B
(L
OO

15

Computations

Operators build a Bayesian network rather than
evaluating immediately.

M
I 1l
O
I
O

S

15

Computations

Operators build a Bayesian network rather than
evaluating immediately.

(-

M
I 1l
O
I
O

o

15

Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

0 2 4 6 3

Speed (mph)

10

16

Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

0 2 4 6 3

Speed (mph)

10

17

Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

PriSpeed > 4]

0 2 4 6 3

Speed (mph)

10

17

Deciding conditionals

if (Speed > 4) More likely than not
Alert("Keep it up!"); that Speed > 47

4 mph

PriSpeed > 4]

0 2 4 6 3 10
Speed (mph)

17

Deciding conditionals

if ((Speed > 4).Pr(0.9))
Alert("Keep 1t up!”);

4 mph

PriSpeed > 4]

0 2 4 6 3

Speed (mph)

10

18

Deciding conditionals

if ((Speed > 4).Pr(0.9))
Alert("Keep 1t up!”);

4 mph

At least 0% likely
that Speed > 47

PriSpeed > 4]

0 2 4 6
Speed (mph)

18

ldentifying absurd data

PrevLocn = Get();
Sleep(5);
Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4) // 7 mph
Alert("That’s crazy!");

19

ldentifying absurd data

PrevLocn = Get();
Sleep(5);
Location = Get();

double Dist =

Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4) // 7 mph
Alert("That’s crazy!");

Naive: 30 times

19

ldentifying absurd data

< > PrevLocn = Get();
Sleep(5);
< > Location = Get();
<double> Dist =
Distance(LastLocn, Location);

<double> Speed = Dist / 5;

if (Speed > 4) // 7 mph Naive: 30 times
Alert("That’s crazy!");

ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

if (Speed > 4) // 7 mph

> PrevLocn Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

Naive: 30 times

20

ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

1f ((Speed > 4).Pr(0.9))

> PrevLocn = Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

Naive: 30 times

21

ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

1f ((Speed > 4).Pr(0.9))

> PrevLocn = Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

90%: never

Naive: 30 times

21

Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate

22

Uncertain<

an abstraction for reasoning about noise

exploiting context

language constructs to make data more accurate

22

23

23

1f (RecognizeBeard(photo))
AddBeardToAvatar();

23

1f (RecognizeBeard(photo))
AddBeardToAvatar();

23

City userCity = ...;

1f (RecognizeBeard(photo))
AddBeardToAvatar();

23

City userCity = ...;

1f (RecognizeBeard(photo))
AddBeardToAvatar();

context
application-specific
domain knowledge

23

Static context o Q

City

e How does city influence beards?

24

Static context

e How does city influence beards?

24

Static context

e How does city influence beards?

HasBeard_City(c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

24

Static context

e How does city influence beards?

HasBeard_City(c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

24

Static context

e How does city influence beards?

HasBeard_City(c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

)

var Cities = Uniform(...);

24

Static context

e How does city influence beards?

HasBeard_City(c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

)

var Cities = Uniform(...);

24

Static context

e How does city influence beards?

HasBeard_City(c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

)

var Cities = Uniform(...);

HasBeard =
HasBeard_City <| Cities;

Dynamic context

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

25

Dynamic context

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

25

Dynamic context @ Q

City

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

25

Dynamic context C—C

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;

25

Dynamic context —)

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;

1f (newHasBeard)
AddBeardToAvatar();

25

Dynamic context C—C

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;
if (newHasBea\Q;Pf<®;§¥)
AddBeardToAvatar () ;

20

Two new constructs

N

Building
probability

distributions

(conditional
probability)

#

Composing
context and

estimates
GEVESER
inference)

27

Implementation

* We designed a sequential likelihood

reweighting algorithm to implement this
abstraction

e But we'd like to compile down to
probabilistic programming languages, which
have better inference

28

Simon Says

ooooooooooooo

uuuuuuuuuu

hhhhhhhhhhhhh

29

Simon Says

» Xbox Kinect gesture recognition API

B Gesture? B Gesture? B Gesture3

Fi-score

30

Simon Says

Local model

» Specific to our user

* Need lots of examples
to avoid noise

31

Simon Says

Local model Global (API) model

* Specific to our user * Trained over many

* Need lots of examples users
to avoid noise * Generalises well

31

Simon Says

Local model Global (API) model

* Specific to our user * Trained over many
* Need lots of examples users
to avoid noise * Generalises well

We'd like to keep both!

31

Simon Says

» Personalised gesture recognition model

B Gesture? B Gesture? B Gesture3

Fi-score

32

Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate

33

SRR Microsoft
W TEXAS 'Research

Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

Thanks!

exploiting context

language constructs to make data more accurate

33

