
1

Programming the Internet of
Uncertain <T>hings

James Bornholt
Na Meng
Todd Mytkowicz
Kathryn S. McKinley

University of Washington

University of Texas at Austin

Microsoft Research

Microsoft Research

2

2

24 mph

3

4

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();

5

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(LastLocn, Location);
double Speed = Dist / 5;

6

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(LastLocn, Location);
double Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");

7

7

59 mph

8

8

sensors

machine learning

9

sensors

machine learning

9

sensors

machine learning

approximate
computing

10

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

10

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

11

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(LastLocn, Location);
double Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");

12

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");

12

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4)
 Alert("Keep it up!");

86% fewer errors

Semantics

Uncertain<T> encapsulates probability
distributions and hides statistical complexity.

• Computing over random variables

• Deciding conditionals

13

Computations

14

X

Y X+Y

Represent distributions by random samples

Computations

14

X

Y

x y

X+Y

x y

Represent distributions by random samples

Computations

14

X

Y

x y x+y

X+Y

x y

Represent distributions by random samples

Operators build a Bayesian network rather than
evaluating immediately.

Computations

15

D = A / B

A B

Operators build a Bayesian network rather than
evaluating immediately.

Computations

15

D = A / B

A B

/D

Operators build a Bayesian network rather than
evaluating immediately.

Computations

15

D = A / B
E = D - C

A B

/ CD

Operators build a Bayesian network rather than
evaluating immediately.

Computations

15

D = A / B
E = D - C

A B

/ C

–

D

E

Deciding conditionals
if (Speed > 4)
 Alert("Keep it up!");

16

4 mph

0 2 4 6 8 10
Speed (mph)

Deciding conditionals
if (Speed > 4)
 Alert("Keep it up!");

17

4 mph

0 2 4 6 8 10
Speed (mph)

Deciding conditionals
if (Speed > 4)
 Alert("Keep it up!");

17

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]

Deciding conditionals
if (Speed > 4)
 Alert("Keep it up!");

17

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]

More likely than not
that Speed > 4?

Deciding conditionals
if ((Speed > 4).Pr(0.9))
 Alert("Keep it up!");

18

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]

Deciding conditionals
if ((Speed > 4).Pr(0.9))
 Alert("Keep it up!");

18

4 mph

0 2 4 6 8 10
Speed (mph)

At least 90% likely
that Speed > 4?

Pr[Speed > 4]

Identifying absurd data

19

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(LastLocn, Location);
double Speed = Dist / 5;

if (Speed > 4) // 7 mph
 Alert("That’s crazy!");

Identifying absurd data

19

GeoCoordinate PrevLocn = Get();
Sleep(5);
GeoCoordinate Location = Get();
double Dist =
 Distance(LastLocn, Location);
double Speed = Dist / 5;

if (Speed > 4) // 7 mph
 Alert("That’s crazy!");

Naive: 30 times

Identifying absurd data

20

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4) // 7 mph
 Alert("That’s crazy!");

Naive: 30 times

Identifying absurd data

20

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if (Speed > 4) // 7 mph
 Alert("That’s crazy!");

Naive: 30 times
50%: 4 times

Identifying absurd data

21

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if ((Speed > 4).Pr(0.9))
 Alert("That’s crazy!");

Naive: 30 times
50%: 4 times

Identifying absurd data

21

Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location = Get();
Uncertain<double> Dist =
 Distance(LastLocn, Location);
Uncertain<double> Speed = Dist / 5;

if ((Speed > 4).Pr(0.9))
 Alert("That’s crazy!");

Naive: 30 times
50%: 4 times
90%: never

22

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

22

Uncertain<

exploiting context

an abstraction for reasoning about noise

language constructs to make data more accurate

23

23

23

if (RecognizeBeard(photo))
 AddBeardToAvatar();

23

if (RecognizeBeard(photo))
 AddBeardToAvatar();

23

if (RecognizeBeard(photo))
 AddBeardToAvatar();

City userCity = ...;

23

if (RecognizeBeard(photo))
 AddBeardToAvatar();

City userCity = ...; context
application-specific
domain knowledge

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) {
 if (c == "Seattle")
 return new Bernoulli(0.4);
 else
 return new Bernoulli(0.2);
}

var Cities = Uniform(...);

Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

City Beard

Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

Cities.Value = "Seattle";

City Beard

Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

City Beard

Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

Bernoulli newHasBeard = oldHasBeard # HasBeard;

City Beard

Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

Bernoulli newHasBeard = oldHasBeard # HasBeard;

if (newHasBeard)
 AddBeardToAvatar();

City Beard

Dynamic context

• Exploit knowledge about this user

26

var Cities = Uniform(...);
Bernoulli HasBeard =
 HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

Bernoulli newHasBeard = oldHasBeard # HasBeard;

if (newHasBeard.Pr(0.9))
 AddBeardToAvatar();

City Beard

<|

#

Two new constructs

27

<| #

Building
probability
distributions
(conditional
probability)

Composing
context and
estimates
(Bayesian
inference)

Implementation

• We designed a sequential likelihood
reweighting algorithm to implement this
abstraction

• But we’d like to compile down to
probabilistic programming languages, which
have better inference

28

Simon Says

29

Simon Says

• Xbox Kinect gesture recognition API

30

F₁
-s

co
re

0

0.25

0.5

0.75

1

Person

#1 #2 #3 #4 #5 #6 #7

Gesture1 Gesture2 Gesture3

Simon Says

31

Local model

• Specific to our user
• Need lots of examples

to avoid noise

Simon Says

31

Local model Global (API) model

• Specific to our user
• Need lots of examples

to avoid noise

• Trained over many
users

• Generalises well

Simon Says

31

Local model Global (API) model

• Specific to our user
• Need lots of examples

to avoid noise

• Trained over many
users

• Generalises well

We’d like to keep both!

Simon Says

• Personalised gesture recognition model

32

F₁
-s

co
re

0

0.25

0.5

0.75

1

Person

#1 #2 #3 #4 #5 #6 #7

Gesture1 Gesture2 Gesture3

33

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

33

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

Thanks!

