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GeoCoordinate PrevLocn = Get(); 
Sleep(5); 
GeoCoordinate Location = Get(); 
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GeoCoordinate PrevLocn = Get(); 
Sleep(5); 
GeoCoordinate Location = Get(); 
double Dist =  
             Distance(LastLocn, Location); 
double Speed = Dist / 5; 

if (Speed > 4) 
    Alert("Keep it up!");



7



7

59 mph



8



8

sensors

machine learning



9

sensors

machine learning



9

sensors

machine learning

approximate 
computing



10

Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate
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GeoCoordinate PrevLocn = Get(); 
Sleep(5); 
GeoCoordinate Location = Get(); 
double Dist =  
             Distance(LastLocn, Location); 
double Speed = Dist / 5; 

if (Speed > 4) 
    Alert("Keep it up!");
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Uncertain<GeoCoordinate> PrevLocn = Get(); 
Sleep(5); 
Uncertain<GeoCoordinate> Location = Get(); 
Uncertain<double> Dist =  
             Distance(LastLocn, Location); 
Uncertain<double> Speed = Dist / 5; 

if (Speed > 4) 
    Alert("Keep it up!");
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Uncertain<GeoCoordinate> PrevLocn = Get(); 
Sleep(5); 
Uncertain<GeoCoordinate> Location = Get(); 
Uncertain<double> Dist =  
             Distance(LastLocn, Location); 
Uncertain<double> Speed = Dist / 5; 

if (Speed > 4) 
    Alert("Keep it up!");

86% fewer errors



Semantics

Uncertain<T> encapsulates probability 
distributions and hides statistical complexity. 

• Computing over random variables 

• Deciding conditionals
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Computations
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Operators build a Bayesian network rather than 
evaluating immediately.

Computations
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Operators build a Bayesian network rather than 
evaluating immediately.
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Deciding conditionals
if (Speed > 4) 
    Alert("Keep it up!");
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Deciding conditionals
if (Speed > 4) 
    Alert("Keep it up!");
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4 mph
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Speed (mph)

Pr[Speed > 4]

More likely than not 
that Speed > 4?



Deciding conditionals
if ((Speed > 4).Pr(0.9)) 
    Alert("Keep it up!");
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Deciding conditionals
if ((Speed > 4).Pr(0.9)) 
    Alert("Keep it up!");
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At least 90% likely 
that Speed > 4?

Pr[Speed > 4]



Identifying absurd data
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GeoCoordinate PrevLocn = Get(); 
Sleep(5); 
GeoCoordinate Location = Get(); 
double Dist =  
             Distance(LastLocn, Location); 
double Speed = Dist / 5; 

if (Speed > 4)  // 7 mph 
    Alert("That’s crazy!");
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GeoCoordinate PrevLocn = Get(); 
Sleep(5); 
GeoCoordinate Location = Get(); 
double Dist =  
             Distance(LastLocn, Location); 
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if (Speed > 4)  // 7 mph 
    Alert("That’s crazy!");

Naive: 30 times
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Uncertain<GeoCoordinate> PrevLocn = Get(); 
Sleep(5); 
Uncertain<GeoCoordinate> Location = Get(); 
Uncertain<double> Dist =  
             Distance(LastLocn, Location); 
Uncertain<double> Speed = Dist / 5; 

if (Speed > 4)  // 7 mph 
    Alert("That’s crazy!");

Naive: 30 times
50%: 4 times



Identifying absurd data
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Uncertain<GeoCoordinate> PrevLocn = Get(); 
Sleep(5); 
Uncertain<GeoCoordinate> Location = Get(); 
Uncertain<double> Dist =  
             Distance(LastLocn, Location); 
Uncertain<double> Speed = Dist / 5; 

if ((Speed > 4).Pr(0.9)) 
    Alert("That’s crazy!");
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Identifying absurd data

21

Uncertain<GeoCoordinate> PrevLocn = Get(); 
Sleep(5); 
Uncertain<GeoCoordinate> Location = Get(); 
Uncertain<double> Dist =  
             Distance(LastLocn, Location); 
Uncertain<double> Speed = Dist / 5; 

if ((Speed > 4).Pr(0.9)) 
    Alert("That’s crazy!");

Naive: 30 times
50%: 4 times
90%: never
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exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate
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if (RecognizeBeard(photo)) 
    AddBeardToAvatar();



23

if (RecognizeBeard(photo)) 
    AddBeardToAvatar();



23

if (RecognizeBeard(photo)) 
    AddBeardToAvatar();

City userCity = ...;
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if (RecognizeBeard(photo)) 
    AddBeardToAvatar();

City userCity = ...; context 
application-specific 
domain knowledge



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?

24

Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
        return new Bernoulli(0.2); 
} 

var Cities = Uniform(...); 

Bernoulli HasBeard =  
    HasBeard_City <| Cities;

City Beard



Static context

• How does city influence beards?
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Bernoulli HasBeard_City(City c) { 
    if (c == "Seattle") 
        return new Bernoulli(0.4); 
    else 
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Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard = 
    HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

City Beard



Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard = 
    HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

Bernoulli newHasBeard = oldHasBeard # HasBeard;
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Dynamic context

• Exploit knowledge about this user

25

var Cities = Uniform(...);
Bernoulli HasBeard = 
    HasBeard_City <| Cities;

Cities.Value = "Seattle";

Bernoulli oldHasBeard = BeardRecognizer(photo);

Bernoulli newHasBeard = oldHasBeard # HasBeard;

if (newHasBeard)
    AddBeardToAvatar();

City Beard



Dynamic context

• Exploit knowledge about this user

26

var Cities = Uniform(...); 
Bernoulli HasBeard =  
    HasBeard_City <| Cities; 

Cities.Value = "Seattle"; 

Bernoulli oldHasBeard = BeardRecognizer(photo); 

Bernoulli newHasBeard = oldHasBeard # HasBeard; 

if (newHasBeard.Pr(0.9)) 
    AddBeardToAvatar();

City Beard

<|

#



Two new constructs
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<| #

Building  
probability  
distributions 
(conditional  
probability)

Composing  
context and 
estimates 
(Bayesian  
inference)



Implementation

• We designed a sequential likelihood 
reweighting algorithm to implement this 
abstraction 

• But we’d like to compile down to 
probabilistic programming languages, which 
have better inference 
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Simon Says
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Simon Says

• Xbox Kinect gesture recognition API
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• Specific to our user 
• Need lots of examples 

to avoid noise
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Local model Global (API) model

• Specific to our user 
• Need lots of examples 

to avoid noise

• Trained over many 
users 

• Generalises well

We’d like to keep both!



Simon Says

• Personalised gesture recognition model
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Uncertain<T>

exploiting context

an abstraction for reasoning about noise [ASPLOS’14]

language constructs to make data more accurate

Thanks!


