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GeoCoordinate PrevLocn Get();
Sleep(5);

GeoCoordinate Location

Get();



PrevLocn = Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;



PrevlLocn Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4)
Alert("Keep 1t up!”);
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Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate
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Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate
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PrevlLocn Get();

Sleep(5);

Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4)
Alert("Keep 1t up!”);
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Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location
Uncertain<double> Dist =
Distance(LastLocn, Location);

Uncertain<double> Speed = Dist / 5;

Get();

if (Speed > 4)
Alert("Keep 1t up!”);
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Uncertain<GeoCoordinate> PrevLocn = Get();
Sleep(5);
Uncertain<GeoCoordinate> Location
Uncertain<double> Dist =
Distance(LastLocn, Location);

Uncertain<double> Speed = Dist / 5;

Get();

if (Speed > 4)
Alert("Keep 1t up!”);
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Semantics

Uncertain<T> encapsulates probability
distributions and hides statistical complexity.

e Computing over random variables

e Deciding conditionals
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Computations

Represent distributions by random samples
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Computations

Represent distributions by random samples
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Computations

Represent distributions by random samples
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Computations

Operators build a Bayesian network rather than
evaluating immediately.

D=A/B
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Computations

Operators build a Bayesian network rather than
evaluating immediately.

D = A /B
(L
OO
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Computations

Operators build a Bayesian network rather than
evaluating immediately.
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Computations

Operators build a Bayesian network rather than
evaluating immediately.
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Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

0 2 4 6 3

Speed (mph)

10
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Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

0 2 4 6 3

Speed (mph)

10
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Deciding conditionals

if (Speed > 4)
Alert("Keep 1t up!”);

4 mph

PriSpeed > 4]

0 2 4 6 3

Speed (mph)

10
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Deciding conditionals

if (Speed > 4) More likely than not
Alert("Keep it up!"); that Speed > 47

4 mph

PriSpeed > 4]

0 2 4 6 3 10
Speed (mph)
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Deciding conditionals

if ((Speed > 4).Pr(0.9))
Alert("Keep 1t up!”);

4 mph

PriSpeed > 4]

0 2 4 6 3

Speed (mph)

10
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Deciding conditionals

if ((Speed > 4).Pr(0.9))
Alert("Keep 1t up!”);

4 mph

At least 0% likely
that Speed > 47

PriSpeed > 4]

0 2 4 6
Speed (mph)
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ldentifying absurd data

PrevLocn = Get();
Sleep(5);
Location = Get();
double Dist =
Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4) // 7 mph
Alert("That’s crazy!");
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ldentifying absurd data

PrevLocn = Get();
Sleep(5);
Location = Get();

double Dist =

Distance(LastLocn, Location);

double Speed = Dist / 5;

if (Speed > 4) // 7 mph
Alert("That’s crazy!");

Naive: 30 times
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ldentifying absurd data

< > PrevLocn = Get();
Sleep(5);
< > Location = Get();
<double> Dist =
Distance(LastLocn, Location);

<double> Speed = Dist / 5;

if (Speed > 4) // 7 mph Naive: 30 times
Alert("That’s crazy!");



ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

if (Speed > 4) // 7 mph

> PrevLocn Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

Naive: 30 times
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ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

1f ((Speed > 4).Pr(0.9))

> PrevLocn = Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

Naive: 30 times
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ldentifying absurd data

<

Sleep(5);
<

<dou

<dou

1f ((Speed > 4).Pr(0.9))

> PrevLocn = Get();

> Location = Get():
nle> Dist =
Distance(LastLocn, Location);

nle> Speed = Dist / 5;

Alert("That’s crazy!"); 50%: 4 times

90%: never

Naive: 30 times
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Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate
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Uncertain<

an abstraction for reasoning about noise

exploiting context

language constructs to make data more accurate
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1f (RecognizeBeard(photo))
AddBeardToAvatar();
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1f (RecognizeBeard(photo))
AddBeardToAvatar();
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City userCity = ...;

1f (RecognizeBeard(photo))
AddBeardToAvatar();
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City userCity = ...;

1f (RecognizeBeard(photo))
AddBeardToAvatar();

context
application-specific
domain knowledge
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Static context o Q

City

e How does city influence beards?
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Static context

e How does city influence beards?
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Static context

e How does city influence beards?

HasBeard_City( c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);
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Static context

e How does city influence beards?

HasBeard_City( c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

)

var Cities = Uniform(...);
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Static context
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HasBeard_City( c) {
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return new (0.4);
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)
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Static context

e How does city influence beards?

HasBeard_City( c) {
1f (c == "Seattle”)
return new (0.4);
else
return new (0.2);

)

var Cities = Uniform(...);

HasBeard =
HasBeard_City <| Cities;



Dynamic context

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;
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Dynamic context

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;
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Dynamic context @ Q

City

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);
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Dynamic context C—C

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;
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Dynamic context —)

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;

1f (newHasBeard)
AddBeardToAvatar();

25



Dynamic context C—C

City Beard

» Exploit knowledge about this user

var Cities = Uniform(...);
HasBeard =
HasBeard_City <| Cities;

Cities.Value = "Seattle”;

oldHasBeard = BeardRecognizer (photo);

newHasBeard = oldHasBeard # HasBeard;
if (newHasBea\Q;Pf<®;§¥)
AddBeardToAvatar () ;
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Two new constructs

N

Building
probability

distributions

(conditional
probability)

#

Composing
context and

estimates
GEVESER
inference)
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Implementation

* We designed a sequential likelihood

reweighting algorithm to implement this
abstraction

e But we'd like to compile down to
probabilistic programming languages, which
have better inference
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Simon Says

ooooooooooooo

uuuuuuuuuu

hhhhhhhhhhhhh

29



Simon Says

» Xbox Kinect gesture recognition API

B Gesture? B Gesture? B Gesture3

Fi-score
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Simon Says

Local model

» Specific to our user

* Need lots of examples
to avoid noise
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Simon Says

Local model Global (API) model

* Specific to our user * Trained over many

* Need lots of examples users
to avoid noise * Generalises well
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Simon Says

Local model Global (API) model

* Specific to our user * Trained over many
* Need lots of examples users
to avoid noise * Generalises well

We'd like to keep both!
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Simon Says

» Personalised gesture recognition model

B Gesture? B Gesture? B Gesture3

Fi-score
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Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

exploiting context

language constructs to make data more accurate
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Uncertain<T>

an abstraction for reasoning about noise [ASPLOS'14]

Thanks!

exploiting context

language constructs to make data more accurate
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