
Scaling Program Synthesis by 
Exploiting Existing Code

James Bornholt 
Emina Torlak
University of Washington



Synthesis: write programs automatically

SemanticsSyntax



Synthesis: write programs automatically

SemanticsSyntax



Synthesis: write programs automatically

Target Behavior

SemanticsSyntax

f(x) = 4x+ 1



Synthesis: write programs automatically

Target Behavior

4*x + 1

SemanticsSyntax

f(x) = 4x+ 1



Synthesis: write programs automatically

Target Behavior

x + x + x + x + 1

4*x + 1

SemanticsSyntax

f(x) = 4x+ 1

(x<<2) + 1



Synthesis: write programs automatically

Target Behavior

SemanticsSyntax

Permutation(L, f(L))

^ Sorted(f(L))



Synthesis: write programs automatically

Target Behavior

SemanticsSyntax

Permutation(L, f(L))

^ Sorted(f(L))

Quicksort

Bubble Sort



The success of synthesis

End-user programming  
by example [FlashFill, POPL’11]

Cache coherence protocols 
[Transit, PLDI’13]

Parallel browser layout  
engines [PPoPP’13]

Compilers for new spatial  
architectures [Chlorophyll, PLDI’14]



The success of synthesis

End-user programming  
by example [FlashFill, POPL’11]

Cache coherence protocols 
[Transit, PLDI’13]

Parallel browser layout  
engines [PPoPP’13]

Compilers for new spatial  
architectures [Chlorophyll, PLDI’14]

Synthesis 
turns 

high-level intent 

into 

low-level detail



The success of synthesis

End-user programming  
by example [FlashFill, POPL’11]

Cache coherence protocols 
[Transit, PLDI’13]

Parallel browser layout  
engines [PPoPP’13]

Compilers for new spatial  
architectures [Chlorophyll, PLDI’14]

Synthesis 
turns 

high-level intent 

into 

low-level detail

Approximate 
Computing 
quality bounds 

into 
approximate programs



The success of synthesis

End-user programming  
by example [FlashFill, POPL’11]

Cache coherence protocols 
[Transit, PLDI’13]

Parallel browser layout  
engines [PPoPP’13]

Compilers for new spatial  
architectures [Chlorophyll, PLDI’14]

Synthesis 
turns 

high-level intent 

into 

low-level detail

Approximate 
Computing 
quality bounds 

into 
approximate programs

Hardware  
Synthesis 

programs 
into 

hardware designs



The success of synthesis

End-user programming  
by example [FlashFill, POPL’11]

Cache coherence protocols 
[Transit, PLDI’13]

Parallel browser layout  
engines [PPoPP’13]

Compilers for new spatial  
architectures [Chlorophyll, PLDI’14]

Synthesis 
turns 

high-level intent 

into 

low-level detail

Approximate 
Computing 
quality bounds 

into 
approximate programs

Hardware  
Synthesis 

programs 
into 

hardware designs

Black Box  
Systems 

observed behaviors 
into 

specifications



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Video and image quality



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Video and image quality

Sensors and simulation

Machine learning



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Precise 
Implementation



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Precise 
Implementation

Desired Quality



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Approximate 
Compiler

Precise 
Implementation

Desired Quality



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Approximate 
Compiler

Precise 
Implementation

Desired Quality

Approximate 
Program



Not all applications require 
perfect accuracy

Approximate 
Computing 
quality bounds 

into 
approximate programs

Approximate 
Program 

Synthesis†

Precise 
Implementation

Desired Quality

Approximate 
Program

† Bornholt, Torlak, Ceze, Grossman. Approximate Program Synthesis. At WAX’15, collocated with PLDI’15.



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

module example(input a, b, c, output y); 
 assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c; 
endmodule



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

module example(input a, b, c, output y); 
 assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c; 
endmodule



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

module example(input a, b, c, output y); 
 assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c; 
endmodule



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

High-Level Synthesis (HLS)



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

High-Level Synthesis (HLS)

Place and route Timing closure

Crosstalk and feedback Quantum!



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

Mark Wyse 
UW grad student and 
HLS extraordinaire 



Hardware  
Synthesis 

programs 
into 

hardware designs

Synthesizing circuits from 
high-level languages

float dist(float a[3], float b[3]) { 
    float r = 0; 
    r += (a[0] - b[0]) * (a[0] - b[0]); 
    r += (a[1] - b[1]) * (a[1] - b[1]); 
    r += (a[2] - b[2]) * (a[2] - b[2]); 
    return sqrt(r); 
}

Mark Wyse 
UW grad student and 
HLS extraordinaire 



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation

Programming  
by example



Black Box  
Systems 

observed behaviors 
into 

specifications

Defining system behavior 
by observation

Programming  
by example

Synthesizing x86 
instruction specs

Godefroid and Taly. Automated Synthesis of Symbolic Instruction Encodings from I/O Samples. PLDI’12.



Black Box  
Systems 

observed behaviors 
into 

specifications

Approximate 
Computing 
quality bounds 

into 
approximate programs

Hardware  
Synthesis 

programs 
into 

hardware designs



Machine Learning and Synthesis



Learning programs from examples

Black Box  
Systems 

observed behaviors 
into 

specifications

9P.
^

xi2X

'(x
i

, P (x
i

))



Learning programs from examples

Black Box  
Systems 

observed behaviors 
into 

specifications

9P.
^

xi2X

'(x
i

, P (x
i

))

FlashFill



Learning programs from examples

FlashFill Version Space Algebra



Machine learning and synthesis

Program 
Synthesis

Statistical 
Machine  
Learning



Machine learning and synthesis

Program 
Synthesis

Statistical 
Machine  
Learning

Millions of examples/parameters



Machine learning and synthesis

Program 
Synthesis

Statistical 
Machine  
Learning

Millions of examples/parameters100 instructions



Machine learning and synthesis

Program 
Synthesis

Statistical 
Machine  
Learning

Millions of examples/parameters100 instructions

Approximate Computing

Hardware Synthesis

Black Box Systems



Machine learning and synthesis

Program 
Synthesis

Statistical 
Machine  
Learning

Millions of examples/parameters100 instructions

Approximate Computing

Hardware Synthesis

Black Box Systems



Programs are not  
uniformly distributed.



Programs are not  
uniformly distributed.

St
ac

k 
O

ve
rfl

ow
 m

en
tio

ns

0

20000

40000

60000

80000

malloc longjmp



Programs are not  
uniformly distributed.

St
ac

k 
O

ve
rfl

ow
 m

en
tio

ns

0

20000

40000

60000

80000

malloc longjmp



Programs are not  
uniformly distributed.

St
ac

k 
O

ve
rfl

ow
 m

en
tio

ns

0

20000

40000

60000

80000

malloc longjmp



Programs are not  
uniformly distributed.

St
ac

k 
O

ve
rfl

ow
 m

en
tio

ns

0

20000

40000

60000

80000

malloc longjmp

mov

call

push

mov

call

test

jmp

lea

push

sub



Component-Based Synthesis



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

f(x, y) =

�
x+ y

2

⌫



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

x

y



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

x

y

f(x,y)



Synthesis of Loop-Free Programs

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

f(x, y) =

�
x+ y

2

⌫

and

xor

add

>> 1x

y

f(x,y)



Synthesis of Loop-Free Programs

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.



lt gt

Synthesis of Loop-Free Programs

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

sub mul

div udiv

rem urem

or nand

not neg

<< 1 >>> 1

<< 2 eq

le ge

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.



lt gt

Synthesis of Loop-Free Programs

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

sub mul

div udiv

rem urem

or nand

not neg

<< 1 >>> 1

<< 2 eq

le ge

Gulwani, Jha, Tiwari, and Venkatesan. Synthesis of loop-free programs. PLDI’11.

So
lv

in
g 

tim
e 

(s
ec

s)

0

500

1000

1500

2000

Number of components
0 4 8 12 16



lt gt

Higher-level components

and xor

add >> 1

sub mul

div udiv

rem urem

or nand

not neg

<< 1 >>> 1

<< 2 eq

le ge

f(L) = min{li | li 2 L}



Higher-level components

f(L) = min{li | li 2 L}



Higher-level components

f(L) = min{li | li 2 L}
quicksort

0

[ ]



Higher-level components

f(L) = min{li | li 2 L}
quicksort

f(L) = quicksort(L)[0]

0

[ ]



Higher-level components

f(L) = min{li | li 2 L}
quicksort

f(L) = quicksort(L)[0]

0

[ ]

Mine existing code bases for common idioms



Higher-level components

f(L) = min{li | li 2 L}
quicksort

f(L) = quicksort(L)[0]

0

[ ]

Mine existing code bases for common idioms

Hardware  
Synthesis 

programs 
into 

hardware designs



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫
and xor

add >> 1

x

y

f(x,y)



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫

and

xor

add >> 1

x

y



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫

and

xor

add >> 1

x

y

mov

call

push

mov

call

test

jmp

lea

push

sub



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫

and

xor

add >> 1

x

y

Learn search heuristics from 

existing code

mov

call

push

mov

call

test

jmp

lea

push

sub



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫

and

xor

add >> 1

x

y

Learn search heuristics from 

existing code

Programming by example  
[FlashFill, POPL’11]

Autocomplete with synthesis 
[CodeHint, ICSE’14]

mov

call

push

mov

call

test

jmp

lea

push

sub



Producing candidate programs

f(x, y) =

�
x+ y

2

⌫

and

xor

add >> 1

x

y

Learn search heuristics from 

existing code

Programming by example  
[FlashFill, POPL’11]

Autocomplete with synthesis 
[CodeHint, ICSE’14]

Mine existing code bases 

for common idioms

mov

call

push

mov

call

test

jmp

lea

push

sub



Producing candidate programs

Learn search heuristics from 

existing code

Mine existing code bases 

for common idioms

Black Box  
Systems 

observed behaviors 
into 

specifications

Selecting among many  
candidate solutions



Sketch-Based Synthesis



Sketches make synthesis more tractable



Sketches make synthesis more tractable

bit[W] popCount(bit[W] x) { 
    x = (x & 0x5555) + ((x >> 1) & 0x5555); 
    x = (x & 0x3333) + ((x >> 2) & 0x3333); 
    x = (x & 0x0077) + ((x >> 8) & 0x0077); 
    x = (x & 0x000F) + ((x >> 4) & 0x000F); 
    return x; 
}



Sketches make synthesis more tractable

bit[W] popSketched(bit[W] x) { 
    loop (??) { 
        x = (x & ??) + ((x >> ??) & ??); 
    } 
    return x; 
}

bit[W] popCount(bit[W] x) { 
    x = (x & 0x5555) + ((x >> 1) & 0x5555); 
    x = (x & 0x3333) + ((x >> 2) & 0x3333); 
    x = (x & 0x0077) + ((x >> 8) & 0x0077); 
    x = (x & 0x000F) + ((x >> 4) & 0x000F); 
    return x; 
}



Sketches make synthesis more tractable

bit[W] popSketched(bit[W] x) { 
    loop (??) { 
        x = (x & ??) + ((x >> ??) & ??); 
    } 
    return x; 
}



Sketches make synthesis more tractable

bit[W] popSketched(bit[W] x) { 
    loop (??) { 
        x = (x & ??) + ((x >> ??) & ??); 
    } 
    return x; 
}

int[] map(int[] xs) { 
    int[] ys = {}; 
    for (int i=0; i<xs.length; i++) { 
        ys.append(??(xs[i])); 
    } 
    return ys; 
} int[] filter(int[] xs) { 

    int[] ys = {}; 
    for (int i=0; i<xs.length; i++) { 
        if (??(xs[i])) ys.append(xs[i]); 
    } 
}

int[] foldl(int[] xs) { 
    int acc = ??; 
    for (int i=0; i<xs.length; i++) { 
        acc = ??(acc, xs[i]); 
    } 
    return ys; 
}



Sketches make synthesis more tractable

Identify common sketches from 

existing code



Sketches make synthesis more tractable

Identify common sketches from 

existing code

Mine existing code bases 

for common idioms



Sketches make synthesis more tractable

Identify common sketches from 

existing code

Mine existing code bases 

for common idioms

Approximate 
Computing 
quality bounds 

into 
approximate programs



Sketches make synthesis more tractable

Identify common sketches from 

existing code

Mine existing code bases 

for common idioms

Approximate 
Computing 
quality bounds 

into 
approximate programs

Precise 
Implementation

Approximate 
Program 
Synthesis



Program 
Synthesis

Statistical 
Machine  
Learning

Approximate Computing

Hardware Synthesis

Black Box Systems



Program 
Synthesis

Statistical 
Machine  
Learning

Approximate Computing

Hardware Synthesis

Black Box Systems



Program 
Synthesis

Statistical 
Machine  
Learning

Approximate Computing

Hardware Synthesis

Black Box Systems

Thanks!


