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† Bornholt, Torlak, Ceze, Grossman. Approximate Program Synthesis. At WAX’15, collocated with PLDI’15.
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High-Level Synthesis (HLS)

Place and route Timing closure

Crosstalk and feedback Quantum!
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float dist(float a[3], float b[3]) { 
    float r = 0; 
    r += (a[0] - b[0]) * (a[0] - b[0]); 
    r += (a[1] - b[1]) * (a[1] - b[1]); 
    r += (a[2] - b[2]) * (a[2] - b[2]); 
    return sqrt(r); 
}

Mark Wyse 
UW grad student and 
HLS extraordinaire 
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Defining system behavior 
by observation

Programming  
by example

Synthesizing x86 
instruction specs

Godefroid and Taly. Automated Synthesis of Symbolic Instruction Encodings from I/O Samples. PLDI’12.
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Sketches make synthesis more tractable

bit[W] popSketched(bit[W] x) { 
    loop (??) { 
        x = (x & ??) + ((x >> ??) & ??); 
    } 
    return x; 
}

int[] map(int[] xs) { 
    int[] ys = {}; 
    for (int i=0; i<xs.length; i++) { 
        ys.append(??(xs[i])); 
    } 
    return ys; 
} int[] filter(int[] xs) { 

    int[] ys = {}; 
    for (int i=0; i<xs.length; i++) { 
        if (??(xs[i])) ys.append(xs[i]); 
    } 
}

int[] foldl(int[] xs) { 
    int acc = ??; 
    for (int i=0; i<xs.length; i++) { 
        acc = ??(acc, xs[i]); 
    } 
    return ys; 
}
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