WUNSAT WPLSE W

Finding Code That Explodes
Under Symbolic Evaluation

James Bornholt
Emina Torlak

University of Washington

unsat.org

Automated reasoning tools help us
solve hard programming problems

Automated reasoning tools help us
solve hard programming problems

Does my program still

°7 - work after the file system Verification
(&= crashes? [ASPLOS'16]

Automated reasoning tools help us
solve hard programming problems

1 Does my program still

- work after the file system Verification
A crashes? [ASPLOS’16]

How do | compile code

Synthesis for this weird new
architecture? [PLDI'14]

P

Automated reasoning tools help us
solve hard programming problems

Does my program still

7 work after the file system Verification
17 crashes? [ASPLOS’16]

How do | compile code h

Synthesis for this weird new A :
architecture? [PLDI’14] AA

;—» How do | teach kids

R the rules of algebra “Programs”
BB cffectively? [VMCAI'18]

Symbolic evaluators

Does my program still How do | compile code
< work after the file system for this weird new
187 crashes? [ASPLOS’16] architecture? [PLDI’14]

EEES—
o o

Symbolic evaluators

N Does my program still How do | compile code /\
°= work after the file system for this weird new ‘:“
A=l crashes? [ASPLOS’16] architecture? [PLDI’14] -
Interpreter for file system Interpreter for new architecture

operations instructions

Symbolic evaluators

N Does my program still How do | compile code
°= work after the file system for this weird new Ao
137 crashes? [ASPLOS’16] architecture? [PLDI’14] Ad
Interpreter for file system Interpreter for new architecture
operations instructions

Symbolic evaluator

Sketch, Rosette, ...

Symbolic evaluators

N Does my program still How do | compile code /\
°= work after the file system for this weird new ‘:“
(T crashes? [ASPLOS’16] architecture? [PLDI’14] —
Interpreter for file system Interpreter for new architecture
operations instructions

Symbolic evaluator

Sketch, Rosette, ...

Angelic

Verification Synthesis Evecution

for free!

Symbolic evaluators: no free lunch

Does my program still
< work after the file system
187 crashes? [ASPLOS’16]

CC

Interpreter for file system
operations

Symbolic evaluator

Sketch, Rosette, ...

Angelic

Verification Synthesis Evecution

for free!

Symbolic evaluators: no free lunch

Does my program still How do you make
\ = work after the file system

(N7 crashes? [ASPLOS’16] these tools scale?

Interpreter for file system
operations

Symbolic evaluator

Sketch, Rosette, ...

Angelic

Verification Synthesis Evecution

for free!

Symbolic evaluators: no free lunch

N Does my program still How do you make

T work after the file system

'\ w) crashes? [ASPLOS’16] these tools scale?
Interpreter for file system Searching all paths

operations through the interpreter

Symbolic evaluator

Sketch, Rosette, ...

Angelic

Verification Synthesis Execution

for free!

Symbolic profiling identifies performance
iIssues in symbolic evaluation

Symbolic profiling identifies performance
iIssues in symbolic evaluation

Symbolic profiling

Data structures and analyses

Symbolic profiling identifies performance
iIssues in symbolic evaluation

Symbolic profiling

Data structures and analyses

———+ Symbolic evaluation anti-patterns

i Common issues and source-level repairs

Symbolic profiling identifies performance
iIssues in symbolic evaluation

Symbolic profiling

Data structures and analyses

———+ Symbolic evaluation anti-patterns

i Common issues and source-level repairs

% [J [J
&
= sum-of-even-integers-is-even
S the-profiled-thunk
00008 01888 0383
Aggregate @ Caller Context:
Function Score 1
A e 300x speedup on real-world tools
@take 2.8 m—

Symbolic profiling identifies performance
iIssues in symbolic evaluation

Symbolic profiling

Data structures and analyses

———+ Symbolic evaluation anti-patterns

i Common issues and source-level repairs

% [J [J
&
= sum-of-even-integers-is-even
S the-profiled-thunk
00008 01865 0383
Aggregate @ Caller Context:
Function Score 1
A e 300x speedup on real-world tools
@take 2.8 m—

Symbolic evaluation

All-paths execution of programs

Symbolic evaluation executes all
paths through a program

#lang rosette

(define (first-k-even 1st k)
(define xs (filter even? 1lst))
(take xs k))

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? 1lst))
(take xs k))

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

(filter even? ‘(xeo X1))

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

(filter even? ‘(xeo X1))

-.(evenV \eve:? X0)

() “(Xo)

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

1
(]
<
D
-]
o~
\
(o)

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

1
(]
<
D
-]
o~
\
(o)

take runs 22 times ()

Symbolic evaluation executes all
paths through a program

#lang rosette Inputs are unknown

(trying to find values

(define (first-k-even 1lst k) that violate spec)
(define xs (filter even? lst))
(take xs k))

because filter ran |
(filter even? ‘(xeo X1))

on a list of size 2 /
-(even? Xp) (even? xo)

take runs 22 times ()

X
(&)
g
— first-k-even
8 the-profiled-thunk

O.OIOOs O.GISSS 1 .3;)93 1 .9l64s 2.6I1 8s 3.2I733 3.91283 4.5l823 5.2;373 5.8I928 6.5I463

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases

filter 1 call 4.3 mE— 1249 137408 131164 4288 93664
take 1 call 2.8 m—— 4692 50312 49986 2209 49986
andmap 1 cal 0.3n 94 14180 14180 0 4097

the-profiled-thunk 0.1 1 511 66 0 0 0

Call Stack

first-k-even
the-profiled-thunk
O.OIOOS 0.6|553 1 .3;)93 1 .9l64s 2.6I1 8s 3.2I7SS 3.91285 4.5l82s 5.2;373 5.8I923 6.5I46s
Function | e | ie (ms) Term Count Unused Terms Union Size Merge Cases
filter 1 cal {40 oo 1249} 137408 131164 4288 93664
take 1 ozl (20 mmmmm 4692} 50312 49986 2209 49986
andmap 1 031 o 14180 14180 0 4097

the-profiled-thunk 0.1 1 66 0 0 0

Blaming filter even though

it's not the slowest

Symbolic profiling

Data structures and metrics

Two data structures to summarize
symbolic evaluation

evenV Ne‘n? Xo) A A A A
(K
“(Xo) - -
-(even? Xi) (even? Xxi) -(even? Xi) (even? Xxi)
/ \ / \ (even? Xo) (even? Xi)
X0 1
Symbolic evaluation graph Symbolic heap
Reflects the evaluator’s strategy Shape of all symbolic values
for all-paths execution of the program created by the program

Any symbolic evaluation technique can be
summarized by these two data structures

The symbolic evaluation graph
summarizes branching and merging

(filter even? ‘(xo x1)) Symbolic evaluation graph
ﬂ<eve”y Nﬁ”?) e Nodes are program states
‘() “(Xo) e Edges are transitions
—~(even? y Yven? X1) —(even? y */en? X1) between StateS
‘() ‘(x1) ‘(o) ‘(X0 X1)

The symbolic evaluation graph
summarizes branching and merging

(filter even? ‘(xp X1)

/\

‘(Xo)

/\ /N

(Xo) (Xo X1)

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even? ‘(xp X1)

/\

‘(Xo)

/\ /N

(Xo) (Xo X1)

_J

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even?

X@ X1

/\

/\

‘/// \\t:eW?xn

“(Xo) “(Xo X1)

_J

~Bounded model checking ——

(filter even? ‘(xe X1))

ﬂ(even?V Wn? Xo)

() “(Xo)

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even?

-.(eveny Wn? Xo0)

-(even? y Y‘vem X1) -(even? y Y‘ven? X1)

‘(Xo)

_J

~Bounded model checking —

(filter even? ‘(xp X1)

ﬂ(even7V Nf‘en? Xo)
\ s

yse = (ite (even? xo) ‘() ‘(Xo))

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even?

-.(eveny Wn? Xo0)

-(even? y Y‘vem X1) -(even? y Y‘ven? X1)

‘(Xo)

_J

~Bounded model checking —

(filter even? ‘(Xxo

1
—.(even'?V \e\/en7 Xo)

“(Xo)

-'(even7‘y \eve:? X1)

(ite (even? xo) ‘() ‘(Xo))
(append yso ‘(X1))

YSo
YS1

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even?

ﬂ(even:(iiL///// ‘\\\\\iszi?? Xo0)

ﬂ(even?::}// \\{i:en7 X1) ﬂ(even?:;)// \\\i:en? X1)

‘(Xo)

~Bounded model checking ——

(filter even? ‘(xeo X1))

-(even? Xp) (even? xp)

()

/

“(Xo)

\/\
A\

YSo

-(even? Xxi1) (even? xi)

YSo yS1

/
\

VS?
yse = (ite (even? xo) ‘() ‘(Xo))
ys1 = (append yso ‘(x1))

ys2 = (ite (even? Xi1) yS1 YySo)

The symbolic evaluation graph
summarizes branching and merging

~Symbolic execution

(filter even?

X@ X1

ﬂ(even:(iiL///// ‘\\\\\iszi?? Xo0)

‘(Xo)

ﬂ(even?::}// \\{i:en? X1) ﬂ(even?:;)// \\\i:en? X1)

(Xo) (Xo X1)

_J

More states, but
more concrete

Fewer states but
less concrete

~Bounded model checking ——

(filter even? ‘(xeo X1))

-(even? Xp) (even? xp)

()

/

“(Xo)

/

YSo

-(even? Xxi1) (even? xi)

X
A\

YSo yS1

/
\

VS?
yse = (ite (even? xo) ‘() ‘(Xo))
ys1 = (append yso ‘(x1))

ys2 = (ite (even? Xi1) yS1 YySo)

The symbolic heap shows how
symbolic values are used

~Symbolic execution

A A

A A

dx

(even? Xxg)

(even? Xxi1)

Symbolic heap
e Nodes are symbolic terms
e Edges are sub-terms

The symbolic heap shows how
symbolic values are used

~Symbolic execution

(even? Xp) (even? Xi1)

~Bounded model checking ——

YSo
YS1

YS2

ySe = ite—»\(even? X0)
“() “(xo0)
ys1\= append — ‘(X1)
ys2 = 1te— (even? Xxi1)
(ite (even? xo) ‘()

(append yso ‘(X1))
(ite (even? Xxi1i) yS1 YSo)

“(Xe))

The symbolic heap shows how
symbolic values are used

~Symbolic execution

X

(even? Xxg)

A

(even? Xxi1)

Only conditions
in the heap

Conditions and
values (lists etc.)
in the heap

~Bounded model checking ——

YSo
yS1

YS2

ySe =

ysi1\= app

ysz2 =

A

()

(ite (even? Xxp)

“(Xo)

end — ‘(x1)

ite— (even? xi)

(append yso ‘(X1))
(ite (even? Xxi1i) yS1 YSo)

()

ite— (even? Xxp)

“(Xe))

Analyzing symbolic data structures

X

O

z

— first-k-even

8 the-profiled-thunk

0.0:)Os 0.6I553 1 .3:)93 1 .9|64s 2.6I1 8s 3.2I73s 3.9|283 4.5|823 5.2!375 5.8I923 6.5|46$

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases

filter 4.3 —— 1249 137408 131164 4288 93664

take 2.8 n— 4692 50312 49986 2209 49986

andmap 0.3n 94 14180 14180 0 4097

the-profiled-thunk

0.11 511

66

0 0 0

Analyzing symbolic data structures

Function
filter
take
andmap
the-profiled-thunk

Score
4.3 m—
2.8 n—
0.3 n
0.11

For each procedure, measure metrics
that summarize the evolution of the
symbolic evaluation graph and
symbolic heap

Time (ms) Term Count Unused Terms Union Size Merge Cases

1249 137408 131164 4288 93664
4692 50312 49986 2209 49986
94 14180 14180 0 4097
511 66 0 0 0

Analyzing symbolic data structures

For each procedure, measure metrics
that summarize the evolution of the
symbolic evaluation graph and
symbolic heap

Function Score Time (ms) Term Count Unused Terms Union Size Merge Cases
filter 4.3 e— 1249 137408 131164 4288 93664
take 2.8 n— 4692 50312 49986 2209 49986
andmap 0.3n 94 14180 14180 0 4097
the-profiled-thunk 0.1 1 511 66 0 0 0

Summarize metrics as a score to
rank procedures in the program

Symbolic evaluation anti-patterns

Common issues and repairs

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

(define (list-set 1lst i1dx val)

(match st
[(cons X XsS) Terminates early
(1f (= i1dx 0) once idx is found

(cons val Xxs)
(cons X (list-set xs (- i1dx 1) val))]
[_ Ust]))

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

(define (list-set 1lst i1dx val)

(match st
[(cons X XsS) Terminates early
(1f (= i1dx 0) once idx is found

(cons val Xxs)
(cons X (list-set xs (- i1dx 1) val))]
[_ Ust]))

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

(define (list-set lst i1dx val)
(match lst
[(cons X XS)
(cons (1f (= tdx 0) val x)
(list-set xs (- i1dx 1) val))]

[_ lst]))

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

(define (list-set lst i1dx val)
(match lst
[(cons X XS)
(cons (1f (= tdx 0) val x)
(list-set xs (- i1dx 1) val))]

Always recurse to
st
- 1) the end of Ist

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic

evaluation 20 @ Original

Repaired
150p

(define (list-set lst idx val) Em s
(match Llst £ o
[(cons X Xs) -
(cons (1f (= 1dx 0) val x) % 0777500 1000, 1500, 2000

(list—set XS (— idx]_) val))] Length

Always recurse to
st
- 1) the end of Ist

Common anti-patterns and repairs in
symbolic evaluation

Algorithmic mismatch

Algorithms or optimizations poorly suited to symbolic
evaluation

Irregular representation
Data structures of different shapes create different paths

Missed concretization
Lost opportunities to exploit concrete values

Empirical results

Case studies and evaluation

Three symbolic profilers

We developed two implementations:
e The Rosette solver-aided language (Racket)

e The Jalangi dynamic analysis framework (JavaScript)

Since publication, based on our work:

e The Crucible symbolic simulation library (C, Java, ...)
by Galois

Three symbolic profilers

We developed two implementations:
e The Rosette solver-aided language (Racket) - Today

e The Jalangi dynamic analysis framework (JavaScript)

Since publication, based on our work:

e The Crucible symbolic simulation library (C, Java, ...)
by Galois

Actionable: real-world bugs

Case studies on published Rosette-based tools

Tool Speedup
Type system soundness checker [POPL’18] 1.35x%
Refinement type checker for Ruby [VMCAI'18] 6%
File-system crash consistency verifier [ASPLOS’16] 24 %
Cryptographic protocol verifier [FM’18] 29%
SQL query verifier [CIDR’17] 75X
Safety-critical radiotherapy system verifier [CAV'16] 290x

Multiple patches accepted by developers

Actionable: real-world bugs

Case studies on published Rosette-based tools

Tool Speedup
Type system soundness checker [POPL’18] 1.35x%
Refinement type checker for Ruby [VMCAI'18] 6%
File-system crash consistency verifier [ASPLOS'16] 24 %

Used in production at 29

the UW Medical Center
SQL query verifier [CIDR’17] 75X

Cryptographic protocol verifier [FM’

Safety-critical radiotherapy system verifier [CAV'16] 290x

Multiple patches accepted by developers

Explainable: study real users

Small user study: 8 Rosette users, asked to find
known performance bug in 4 programs

Users solved every task more quickly when they had

access to symbolic profiling
6 failures without symbolic profiling, none with

Qualitative feedback:

“gave insight into what Rosette is doing”
“even more useful on my own code”

Symbolic profiling identifies performance
Issues in symbolic evaluation

Does my program work

on all inputs?

Is there a program that
does what | want?

Verificati o Svynthesi o
erification & ESE :?;

N

N raco symprofile file.rkt

https://unsat.org

WUNSAT WPLSE W

https://unsat.org

